

Preamble

In the first year, students were taught – methods of data representation and summarization, Correlation and regression which are the tools that are frequently used in statistical analysis. Further they are introduced to probability, the concept of random variables-discrete as well as continuous and different discrete probability distributions along with applications. Relevant problems on these topics will be included in practical course.

In the subject of Mathematics, the learner was taught the Discrete Mathematics and Real Analysis which are required to gain advanced knowledge and applications of the subject.

He was also introduced to Computer Fundamentals, C- programming, Use of R software and Excel for Statistical computations. He is now ready to take up learn the advanced studies in Statistics, Mathematics and Programming.

In the second year of under-graduation, the learner will be study various probability distributions and their applications to real life situations. An important branch of Statistics, Sampling theory and Design of Experiments will be introduced, where sampling methods and designs used in the industry will be studied. Learners will be encouraged to complete the practical assignments using R software. Latex is introduced in the third semester so that it may help him in report preparing and documentation.

The 3 courses of theory and practicals for Semester-III & Semester-IV respectively are compulsory to all students at the second year.

The courses are as follows: -

Semester III:	USMAAS301:	Probability Distributions III.
	USMAAS302:	Sampling Techniques.
	USMAAS303:	Industrial Statistics.
	USMAAS304:	Discrete Mathematics 3.
	USMAAS305:	Linear Algebra 1.
	USMAAS306:	Python Fundamentals.
	USMAAS307:	Applied Component 3 (Latex).
	USMAASP3123:	Statistics Practical 3 (Based on Courses USMAAS301,
		USMAAS302 and USMAAS303).
	USMAASP345:	Mathematics Practical 3 (Based on Courses USMAAS3
		04 and USMAAS305).
	USMAASP36:	Python Practical (Based on Course USMAAS306).
Semester IV:	USMAAS401:	Probability Distributions IV.
	USMAAS402:	Design of Experiments.
	USMAAS403 :	Operations Research I.
	USMAAS404:	Numerical Analysis.
	USMAAS405:	Linear Algebra 2.
	USMAAS406:	Advanced R.
	USMAAS407:	Applied Component 4 (Basic Data Mining Concepts).
	USMAASP4123:	Statistics Practical 4 (Based on Courses USMAAS401,
		USMAAS402 and USMAAS403).

USMAASP445:	Mathematics Practical 4 (Based on Courses USMAAS4					
	04 and USM	IAAS	5405).			
USMAASP46:	Advanced	R	Practical	(Based	on	Course
	USMAAS406).					

I profusely thank all the committee members for their efforts in drafting the syllabus.

N.B.- (i) The duration of each theory lecture will be of 60 minutes. A course consists of 3 units.For each unit the number of hours allotted are 15. The total number of lecture hours for each course will thus be 45.

For the theory component the value of One Credit is equal to 15 learning hours.

(ii) There will be one practical per batch for each course. The duration of each practical will be of 2 hours, i.e. of 120 minutes.

For practical component the value of One Credit is equal to 30 learning hours.

(iii) Thus in a week, a student will study 3 hours of theory and 2 hours of practical for each course.

Evaluation Pattern for theory papers

The performance of the learner will be evaluated in two components. The first component will be a Continuous Assessment with a weightage of 25% of total marks per course. The second component will be a Semester End Examination with a weightage of 75% of the total marks per course. The allocation of marks for the Continuous Assessment and Semester End Examinations is as shown below:

a) Details of Continuous Assessment (CA)

25% of the total marks per course:

Continuous Assessment	Details	Marks
Component 1 (CA-1)	Test / Assignment	60%
Component 2 (CA-2)	Test / Assignment	40%

b) Details of Semester End Examination

75% of the total marks per course. Duration of examination will be two and half hours.

Question Number	Description	Marks / Sub Question	Total Marks
Q1 to Q3	Attempt Any Three sub questions out of Four sub questions.	7	21 Marks 21 x 3 = 63 Marks
Q4	Attempt Any three sub questions (out of Four sub questions)	4	12
	To	tal Marks	75

Evaluation Pattern for practical papers

In the Practical Exams, there will be 20% assessment for journal and laboratory work and 80% as term end component to be conducted as a semester end exam per course. For each course there will be one examiner per back who will assess the practical examination answer books.

gnature

HOD

molar

Signature Approved by Principal

Signature Approved by Vice-Principal

Page 2 of 22

Program: B.Sc Applied Statistics & Data Analytics (Honours)			Semester : III	
Course: Probability Distributions III			Course Code: USMAAS301	
Teaching Scheme		Evaluation Scheme		
Lecture		Continuous Assessment and	End Semester Examination	
(Hours per	Credits Evaluation (CAE)		(ESE) (Marks-75	
week)		(Marks - 25)	in Question Paper)	
03	03	25	75	

Learning Objectives:

Unit 1:

- To learn the definition of a moment-generating function.
- To find the moment-generating functions of Standard Discrete random variables.
- To learn how to use a moment-generating function to find the mean and variance of a random variable.
- To learn how to use a moment-generating function to identify which probability mass function a random variable X follows.
- To introduce the learner to the concept of Probability Generating Functions.

Unit 2:

- This course gives an introduction to asymptotic methods in statistics.
- Types of convergence such as convergence in probability, convergence with probability one and convergence in distribution are discussed.
- A version of the law of large numbers and the Lindeberg central limit theorem are proved.

Unit 3:

- Making use of joint probability mass function and joint probability density to calculate probabilities.
- Calculate marginal and conditional pdf from joint probability distributions.
- Interpret and calculate covariance and correlations between random variables.

To derive the probability distributions of transformed variables.

Course Outcomes:

After completion of the course, learners would be able to:

(CO1: Remember)

- i. Recall definitions of probability function, density function, cumulative distribution function and moment generating function, and their inter-relationships
- ii. State p.m.f. and p.d.f. of various standard distributions and also their distribution function, skewness and kurtosis.

(CO2: Understand)

- i. Determine and interpret independence and conditional distributions
- ii. Recall well known distributions such as Bernoulli, binomial, Poisson, geometric, uniform.
- iii. Understand which distribution is to be applied in different scenarios.

(CO3: Apply)

- i. Use moment generating function to determine distribution function and moments
- ii. Find distributions of functions of random variables, including distributions of maximum and minimum observations

iii. Identify and apply appropriate distribution in case of various real life problems.

iv. Apply methods from algebra and calculus to derive the mean and variance for a range of probability distributions

(CO4: Analyse)

- i. Distinguish between the different discrete and continuous distributions.
- ii. The basics of asymptotic analysis in statistics and probability
- iii. Derive probability distributions relevant to functions of random variables

(CO5: Evaluate)

- i. Calculate moments and moment generating function.
- ii. Calculate probabilities relevant to multivariate distributions, including marginal and conditional probabilities and the covariance of two random variables.

Outline of S	Syllabus: (per session plan)	
Module	Description	No of hours
1	Generating Functions.	15
2	Limit Theorems , WLLN SLLN,CLT's	15
3	Bivariate Distributions and Transformation of Variables	15
	Total	45
Module	Probability Distributions III	No. of Hours/Credits 45/3
1	Generating Functions.	15
	 Moment Generating Function, Cumulant generating function- 	6
	their important properties. Examples; Relationship between	
	moments and cumulants and their uses.	
	 Characteristic Function- Its properties (without proof). 	2
	 Probability Generating Functions; Properties and Results with 	7
	proofs and Applications.	
2	Limit Theorems, WLLN SLLN,CLT's	15
	✤ Limit laws: Convergence in probability, almost sure convergence.	4
	 Chebyshev's inequality - Convergence in probability and in 	
	distribution	3
	 Convergence in distributions– Limit Laws Weak / Strong Law 	
	of Large Numbers	3
	 Central limit theorem and its applications 	2
	 ✤ Liapunov Theorem. 	1
	 DeMoivre - Laplace Limit Theorem. 	2
	 Lindeberg- Levy theorem 	
3	Bivariate Distributions & Transformation of Variables	15
	✤ Joint Probability mass function for Discrete random variables.	4
	✤ Joint Probability density function for continuous random	
	variables.	
	 Their properties. 	

*	Marginal and Conditional Distributions.	4
*	Independence of Random Variables.	
*	Conditional Expectation & Variance.	
*	Regression Function. Coefficient of Correlation.	
*	Definition and properties of Moment Generating Function	3
	(MGF) of two random variables of discrete and continuous type.	
*	Necessary and Sufficient condition for independence of two	
	random variables.	
*	Transformation of Random Variables and Jacobian of	4
	transformation with illustrations.	

- 1. Prem S. Mann, Introductory Statistics, Wiley Plus., 9th edition, July 2018.
- 2. Hogg R.V. and Tannis E.P., Probability and Statistical Inference, McMillan Publishing Co.
- 3. Jay L. Devore, Probability and Statistics for Engineers and the Sciences, Cengage Learning, 9th edition.

- 1. S. M. Ross Sheldon, Introductory Statistics. Academic Press, 4th edition.
- 2. Statistics An Introduction, Roger Kirk, 5th edition, Thompson Wadsworth.
- 3. David R. Anderson, Dennis J. Sweeney, Thomas A. Williams Statistics for Business & Economics-Cengage (2019).
- 4. Ken Black, Business Statistics for Contemporary Decision making, Wiley Plus, 9th edition.
- 5. Roxy Peck, Jay L. Devore, Statistics: The Exploration & Analysis of Data, Cengage Learning, 7th edition.
- 6. Statistics for Management, Masood Husain Siddiqui, Richard I. Levin, David S. Rubin, Sanjay Rastogi, Pearson ,8th edition.
- Jay L. Devore, Kenneth N. Berk (auth.) Modern Mathematical Statistics with Applications, Springer-Verlag, New York 2nd edition, (2012).
- 8. S.C. Gupta, V.K. Kapoor; Fundamentals of Mathematical Statistics, Sultan Chand & Sons, 8th Edition.

Program: B.Sc A	pplied Statistics	& Data Analytics (Honours)	Semester : II	Ι
Course: Sampling	Techniques		Course Code	: USMAAS302
Teaching Scheme		Evaluation Scheme	·	
Lecture		Continuous Assessment and	End Semester	Examination
(Hours per	Credits	Evaluation (CAE)	(ESE) (Ma	arks-75
week)		(Marks - 25)	in Question	Paper)
03	03	25	7:	5
Learning Objective	es:	· · · · ·		
Unit 1:				
• Define prin	cipal concepts al	bout sampling. Lists the stages of	f sampling proces	S
• The ideas o	f census surveys	and sample surveys.		
	easons for sampl			
	-	bout different sampling methods		
-	-	ges & disadvantages of each san		
Unit 2:		6	r o	
• To make th	e learner aware	of when to use stratified samplin	g.	
Unit 3:		r		
• To make the	learner aware o	f Ratio & Regression Methods of	f Estimation and	
Systematic S				
•		f the Statistical agencies function	ing in India.	
	nresponse biases	e	8	
Course Outcomes:	I			
	of the course, le	earners would be able to:		
(CO1: Remembe				
•	s sampling and i	ts concept.		
(CO2: Understan	1 0	•		
i) Identify the ad	dvantages and di	sadvantages of sampling		
ii) Describe sam	pling terminolog	gies		
iii) which samp	ling technique is	to be applied in different scenari	OS.	
(CO3: Apply)				
i) Decide when	to conduct a stra	tified sampling method.		
ii) Decide when	to conduct a clu	ster sampling method.		
iii)Decide when	to conduct a sys	stematic sampling method.		
iv) Apply all sam	mpling methods	in practical situation.		
(CO4: Analyse)				
i) Differentiate between probability sampling and non-probability sampling techniques.				
(CO5: Evaluate)				
i) Determine sample size and selection method;				
ii) Compute estimates from stratified sample results.				
iii) Compute estimates from cluster sampling results.				
iv) Compute estimates from systematic sample results.				
Outline of Syllabu		an)		1
Module Des	cription			No of hours

1	Sampling Concepts and Simple random Sampling for Variables and Attributes.	15
2	Stratified Sampling.	15
3	Ratio and Regression methods. Concepts of Systematic Sampling. Indian Statistical agencies and their functions.	15
	Total	45
Module	Sampling Techniques	No. of Hours/Credit 45/3
1	Sampling Concepts and Simple random Sampling for Variables and Attributes	15
	 Population, Population unit, Sample, Sample unit, Parameter, Statistic, Estimator, Bias, Unbiasedness, Mean square error & Standard error. 	
	 Census survey, Sample Survey. Steps in conducting a sample survey with examples on designing appropriate Questionnaire. Concepts of Sampling and Non-sampling errors. 	
	 Concepts and methods of Probability and Non Probability sampling. Purposive Sampling, Quota sampling, Snowball sampling. Simple Pandom Sampling: (SPS) 	
	 Simple Random Sampling:(SRS). Definition, Sampling with & without replacement (WR/WOR). Lottery method & use of Random numbers to select Simple random sample. Estimation of population mean & total. Expectation & Variance of the estimators, Unbiased estimator of variance of these estimators. (WR/WOR). 	
	 Estimation of population proportion. Expectation & Variance of the estimators, Unbiased estimator of variance of these estimators. (WR/WOR). 	
	 Confidence interval for population mean/ proportion. (WR/WOR) Estimation of Sample size based on a desired accuracy in case of SRS for variables & attributes. (WR/WOR) 	
2	Stratified Random Sampling	15
	 Need for Stratification of population with suitable examples. Definition of Stratified Sample. Advantages of stratified Sampling. 	
	 Estimation of population mean& total in case of Stratified Random Sampling (WOR within each strata). Expectation & Variance of the unbiased estimators, Unbiased estimators of variances of these estimators. 	
	 Proportional allocation, Optimum allocation with and without varying costs. 	

	✤ Comparison of Simple Random Sampling, Stratified Random	
	Sampling using Proportional allocation & Neyman allocation.	
	 Concept and basic ideas of Cluster sampling, Two-stage 	
	sampling and Multi Stage sampling.	
3	Ratio And Regression methods. Concepts of Systematic Sampling.	15
	Indian Statistical agencies and their functions	
	 Ratio & Regression Methods of Estimation. 	
	Ratio Estimators for population Ratio, Mean & Total.	
	Expectation & MSE of the Estimators. Estimators of MSE, Uses	
	of Ratio Estimator.	
	 Regression Estimators for population Mean & Total. 	
	Expectation & Variance of the Estimators assuming known	
	value of regression coefficient 'b'.	
	 Estimation of 'b'. Resulting variance of the estimators. Uses of 	
	regression Estimator. Comparison of Ratio, Regression & mean	
	per Unit estimators.	
	 Systematic Sampling. 	
	 Statistical Organization's, NSSO, CSO and their functions. 	

- 1. Cochran W.G (1977): Sampling Techniques, John Wiley and Sons, New York.
- 2. Parimal Mukhopadhyay, (1998), Theory and Methods of Survey Sampling: Prentice Hall of India Pvt. Ltd.

- 1. Des Raj (2000): Sample Survey Theory Narosa Publishing House, New Delhi.
- 2. Daroga Singh, F.S.Chaudhary: Theory and Analysis of Sample Survey Designs: Wiley Eastern Ltd. (1986)
- 3. Sukhtme P.V., Sukhatme B.V., Sukhatme S. and Asok C. (1984): Sampling Theory of Surveys with Applications, Indian Society of Agricultural Statistics, New Delhi
- 4. P.V. Sukhatme and B.V. Sukhatme. Sampling Theory of Surveys with Applications:3rd Edition; Iowa State University Press (1984)
- 5. Murthy M.N. (1967): Sampling Theory and Methods, Statistical Publishing Society, Calcutta.
- 6. Sampath S. (2000) : Sampling Theory and Methods, Narosa Publishing House, New Delhi.
- 7. Hansen M.H., Hurwitz W.N. and Madow W.G. (1975) :Sample Survey Method and Theory.
- 8. Kish L (1965): Survey Sampling, John Wiley and Sons, New York.

Program: B.Sc Applied Statistics & Data Analytics (Honours) Semester : III				
Course: Industrial S	Course Code: USMAAS303			
Teaching Scheme	Feaching Scheme Evaluation Scheme			
Lecture		Continuous Assessment and	End Semester Examination	
(Hours per	Credits	Evaluation (CAE)	(ESE) (Marks-75	
week)		(Marks - 25)	in Question Paper)	
03	03	25	75	
Learning Objectives: Unit 1:				
Understand Cor	mmon and Spec	cial Variations		
• Construct and I	nterpret Contro	l Charts P-chart X-bar and R cha	arts.	
Unit 2:				
• Exhibit a personal familiarity with the concepts and practices of Acceptance Sampling				
• State one or more advantages and disadvantages of Acceptance Sampling, and curve				
Six sigma limits				

Unit 3:

- Understand the role and application of PERT/CPM for project scheduling.
- Learn how to define a project in terms of activities such that a network can be used to describe the project.
- Know how to compute the critical path and the project completion time.
- Know how to convert optimistic, most probable, and pessimistic time estimates into expected activity time estimates.
- With uncertain activity times, be able to compute the probability of the project being completed by a specific time.
- Understand the concept and need for crashing.
- Learn how to schedule and control project costs with PERT/Cost.

Course Outcomes:

After completion of the course, learners would be able to:

(CO1: Remember)

i) Define the average outgoing quality of inspected lots.

- (CO2: Understand)
 - i) Explain the purpose of acceptance sampling.
 - ii) Describe project management objective.
 - iii) Describe the project life cycle

(CO3: Apply)

- i) Construct the appropriate Quality Control charts and critically discuss the role of such charts in monitoring a process.
- ii) Develop an appropriate quality assurance plan to assess the ability of the service to meet its required national and international quality standard.
- iii) Draw network diagram of various activities.

(CO4: Analyse)

i) Elucidate techniques and concepts of Statistical Quality Control, Quality Assurance,

Performance Analysis and Multi stream process control. ii) Compare and contrast single and multiple sampling plans. (CO5: Evaluate) i) Assess the ability of a process to meet customer expectations. ii) Construct and use the operating characteristic curve. iii) Estimate the completion time of a project. Outline of Syllabus: (per session plan)

Outline of S	Syllabus: (per session plan)	
Module	Description	No of hours
1	Control Charts	15
2	Acceptance Sampling plans	15
3	PERT-CPM	15
	Total	45
		No. of
Module	Probability Distributions III	Hours/Credits
		45/3
1	Control Charts and	15
	 Principles of control. Process quality control of attributes and variables. 	3
	(\overline{X}, R) , Chart;	5
	✤ p, c, np charts;	
	 p-chart with variable sample size, 	5
	 Uses and applications. 	2
	 Problems involving setting up standards for future use. 	
2	Acceptance Sampling	15
	 Lot Acceptance Sampling Plans by Attributes: 	2
	 Single Sampling Plans (without curtailment). 	5
	✤ OC function and OC curves. AQL, LTPD, ASN, ATI, AOQ,	
	Consumer's risk, Producer's risk.	5
	 Double Sampling Plan (without curtailment). 	
	OC function and OC curves, AOQ, ASN and ATI.	
	 Multiple sampling plans. 	3
	 Introduction to Six sigma limits. 	
3	PERT – CPM 1	15
	Objective and Outline of the techniques. Diagrammatic	2
	representation of activities in a project: Gantt Chart and	
	Milestone Charts,	
	PERT Network: Events and Activities, Networks, Numbering of	3
	Events; Time Estimates; Single v/s Multiple Time estimates.	
	Reduction of Data: Mean, Variance and Standard Deviation,	3
	probability distributions; Normal; Beta, Expected Time Diagram	
	Slack time and Float times. Determination of Critical	
	Computations of Earliest expected time, Latest Allowable	

Occurrence time, Forward and Backward Pass., Slack, Critical	
Path, Probability of achieving completion date; Application of	
CLT, Application to a Network.	
Critical Path Method: Drawing and numbering the network;	3
Time Estimates, Earliest expected time, Latest Allowable	
Occurrence time, Forward and Backward Pass, Slack Time and	
Critical Path, Floats.	
Project cost analysis: Cost v/s Time; Straight Line and	4
segmented Approximations, Optimum Duration, Contracting the	
Network, Graph Reduction Theorem.	
Uses and Applications of PERT CPM Techniques.	

- 1. Douglas C Montgomery; Introduction to Statistical Quality Control. 6th Edition, (2009) John Wiley and sons Inc.
- 2. L. S. Srinath, PERT and CPM Principles and Applications, 3rd Edition, Affiliated East-West Press (Pvt.) Ltd.

- 1. Duncan., Quality Control and Industrial Statistics: D. Taraporewal Sons & Company. 2nd edition
- 2. E.L. Grant. Statistical Quality Control: 2nd edition, McGraw Hill, 1988.
- 3. Bertrand L. Hansen, (1973) Quality Control: Theory and Applications: (1973), Prentice Hall of India Pvt. Ltd.
- 4. I.V. Burr, Mardekkar, Quality Control: New York, 1976.J K Sharma, (1989), Mathematical Models in Operations Research: Tata McGraw Hill Publishing Company Ltd.
- 5. S.D. Sharma.11th edition, Operations Research:.11th edition, KedarNath Ram Nath & Company.
- 6. Kantiswaroop and Manmohan Gupta. Operations Research: 4th Edition; S Chand & Sons
- 7. H. A. Taha., Operations Research: Prentice Hall of India. 10th Edition.
- 8. J. K. Sharma. Quantitative Techniques for Managerial Decisions:(2001), MacMillan
- 9. Maurice Sasieni, Arthur Yaspan and Lawrence Friedman, (1959), Operations Research: Methods and Problems: (1959), John Wiley & Sons.
- 10. Richard Bronson. Schaum Series book in O.R., Tata McGraw Hill Publishing Company Ltd. 2^{nd} edition .

Program: B.Sc Applied Statistics & Data Analytics (Honours)			Semester : III
Course: Discrete Mathematics 3		Course Code: USMAAS304	
Teaching Scheme Evaluation Scheme			
Lecture	Continuous Assessment and End Semester Exami		End Semester Examination
(Hours per	Credits	Evaluation (CAE)	(ESE) (Marks-75
week)		(Marks - 25)	in Question Paper)
03	03 25 75		75

Learning Objectives:

- To make the learner aware that Discrete mathematics has applications to almost all conceivable area of study.
- To introduce the learner to the concept of Groups, Permutation functions, Rings and fields.
- To make the learner aware that modelling with discrete mathematics is an extremely important problem solving skill and they have an opportunity to develop by constructing their own models

Course Outcomes:

After completion of the course, learners would be able to:

CO1: Discuss examples of groups, properties of groups; operations on groups. The nature of orbits, cycles, the alternating group, cyclic groups, abelian groups, cosets and Lagrange's theorem. The concepts of an extension field, and of algebraic elements and of transcendental elements and how these tie together to show that every non-constant polynomial has a zero in some field.

Recall various logic gates and the rules of Boolean algebra.

Grammers are used to generate the words of language.

- CO2: Discuss sets, subsets, and partitions and equivalence relations.Discuss different simplification methods for Boolean functionsFormal languages provide models for programming languages like pascal, fortran, C and so on.
- CO3: Discuss examples of groups, properties of groups; operations on groups. The nature of orbits, cycles, the alternating group, cyclic groups, abelian groups, cosets and Lagrange's theorem Realize the combinational and sequential logic circuits by using various logical blocks. Analyzing

To determine if a word is in a language.

CO4: Explain Homomorphisms, or relationships between groups such as isomorphism and factor groups and Cayley's theorem.

Design synchronous counters and develop sequential circuit applications using flip flop and registers.

Use to Turing machines to recognize sets.

CO5: Compare rings, integral domains, and fields; structures with two binary operations defined on them. Discuss Fermat's and Euler's theorems.

Demonstrate knowledge of why the real and complex numbers are each a field, and that particular rings are not fields (e.g., integers, polynomial rings, matrix rings)

Every effective computation can be carried out by a Turing Machine.

Outline of Syllabus: (per session plan)

Description	No of hours
Algebraic Structures	15
Boolean Algebra.	15
Modelling Computation	15
Total	45
	No. of
Discrete Mathematics 3	Hours/Credits
	45/3
Algebraic Structures	15
Introduction, Algebraic Systems, Semigroups and Monoids	4
Groups, Subgroups, Cyclic Groups, Homomorphism's.	4
	4
	3
	15
	5
	5
	5
• •	
	1.5
	15
	3
	2
-	3
	2
	3
	3
	5
	3
	5
	Boolean Algebra. Modelling Computation Total Discrete Mathematics 3 Algebraic Structures Introduction, Algebraic Systems, Semigroups and Monoids

- 1. B. V. Senthil Kumar and Hemen Dutta, (2020), Discrete Mathematical Structures, CRC Press.
- 2. Kenneth H. Rosen, Discrete Mathematics and Its Applications Eighth Edition, McGraw Hill Education.

- 1. Edgar Goodaire, Michael Parmenter, (2002) Discrete Mathematics with Graph Theory, 8th Edition, Prentice Hall.
- 2. B. Kolman R. Busby S. Ross, (2014), Discrete Mathematical Structures, Sixth Edition, Pearson New International Edition.

Program: B.Sc	Applied Statistics	& Data Analytics (Honours)	Semester : III
Course: : Linear Algebra 1 Course Code: USM			Course Code: USMAAS305
Teaching Scheme Evaluation Scheme			
Lecture		Continuous Assessment and	End Semester Examination
(Hours per	Credits	Evaluation (CAE)	(ESE) (Marks-75
week)		(Marks - 25)	in Question Paper)
03	03	25	75
Learning Obje	ctives:		
• To unders	tand the basic conce	pts of linear algebra	
• Use prope	r notations for linear	r algebra.	
• To introdu	ice the learner to ma	trix algebra.	
• To achiev	e computational prof	ficiency involving procedures in I	linear algebra.
• To Solve	a system of linear eq	uations	
• To unders	tand the axiomatic s	tructure of a modern mathematica	al subject and learn to construct
simple pro	oofs.		
• To introdu	ice the learner to An	alyze vectors in Rn geometrically	y and algebraically.
• To Learn	the applications of li	near algebra.	
• To introdu	ice the learner to the	Matlab software.	
Course Outcon	nes:		
apply t	hize the concepts of these concepts to var	the terms span, linear independen ious vector spaces and subspaces	
CO2: (Under	,		
		ce and subspace. (understand)	
	independence, span,	, and basis.	
CO3: (Apply		, 1 , , , , , , , , , , , , , , , , , , ,	
1	U U	a to linear transformations.	
CO4: (Analy	-	g inverses and determinants.	
•	·	g of inner products and associated	norms)
	-	rs is a vector space, a subspace, or	,
CO5: (Evalu		is is a vector space, a subspace, o	a basis for a vector space.
	·	ations using multiple methods, ir	ncluding Gaussian elimination
	trix inversion.	ations using maniple methods, n	eruaning Guassian eminimation
		s, including inverses and determin	nants.
•	-	ants Determine eigenvalues and e	
	alue problems.		
	abus: (per session p	lan)	
	Description		No of hours
	Linear Equations and	1 Matrices	15
1 I	incar Equations and	1 Mullices	15
	Determinants, Vector		15

	Total	45
		No. of
Module	Linear Algebra 1	Hours/Credits
		45/3
1	Linear Equations and Matrices	15
	Linear Systems, Matrices, Dot product and Matrix Multiplication.	5
	Properties of Matrix Operations,	
	Solutions of Linear System of Equations,	
	Inverse of a Matrix.	5
	LU- Factorization	
	Applications: Markov Chains ; Linear Economic Models	4
2	Determinants, Vectors in Rn	15
	Definition and Properties., Cofactor Expansion and Applications	6
	Determinants from a Computational point of View.	
	Vectors in a plane,n-Vectors, Introduction to Linear transformations.	4
	Application in R2 and R3: Computer Graphics, Cross Product in R3,	5
	limes and Planes.	
3	Real Vector Spaces.	15
	Vector Spaces, Subspaces, Linear Independence.	4
	Basis and Dimensions, Homogeneous Systems.	2
	Rank of a matrix, Applications.	2
	Coordinates and Change of Basis, Orthonormal Bases in Rn,	5
	Orthogonal Complements.	
	Applications: QR-factorization; Least Squares	2

- 1. Bernard Kolman David Hill, (2014), Elementary Linear Algebra with Applications, 9th Edition, Pearson.
- 2. Gareth Williams, (2019), Linear Algebra with Applications, 9th Edition, Jones and Bartlett Learning.

- 1. Gilbert Strang, Introduction to Linear Algebra 5th Edition, Wellesley Cambridge Press
- 2. Serge Lang, Introduction to Linear Algebra-Springer-Verlag New York (1986)
- 3. David Poole Linear Algebra A Modern Introduction-Cengage Learning (2015).
- 4. K. Hoffman and R. Kunze, "Linear Algebra", Prentice Hall, (2008).
- 5. Gilbert Strang, (2019) Linear Algebra and Learning from Data, Wellesley- Cambridge Press.
- 6. Kenneth Kuttler, (2020), Linear Algebra, Theory and Applications. World Scientific.

Program: B.	Sc Ap	plied Statistics	& Data Analytics (Honours)	Semester : III	
Course: Pyth				Course Code:	USMAAS306
Teaching Sc	cheme		Evaluation Scheme		
Lectur	e		Continuous Assessment and En	d Semester E	xamination
(Hours p	per	Credits	Evaluation (CAE)	(ESE) (Mar	rks-75
week))		(Marks - 25)	in Question I	Paper)
03		03	25	75	
Learning Ob	ojectives	:			
• To intro	oduce va	rious concepts	of programming to the students using	Python.	
• To learn	n the syn	ntax of writing	various commands of Python		
• To deve	elop logi	c for Problem S	Solving with the help of Python		
• To learn	n about	the basic const	ructs of programming such as data, or	perations, cor	ditions, loops
functior	ns etc.				
Course Outo	comes:				
After compl	etion of	the course, lear	rners would be able to:		
CO1: (Ren	nember)				
The	concepts	s of programmi	ng before actually starting to write pro	ograms.	
the c	oncepts	of, widgets, G	UI applications and database connectiv	vity.	
CO2: (Und	lerstand)			
The	concepts	s of programmi	ng before actually starting to write pro	ograms.	
CO3: (App	oly)				
Basi	c constru	ucts of program	ming such as data, operations, condition	ions, loops, fi	unctions etc.
CO4: (Ana	alyse)				
Wha	t is patte	ern making?			
Find	his own	n mistakes durin	ng program execution.		
Deve	elop logi	ic reasoning ski	ills.		
CO5: (Eva	luate)				
Prob	lem solv	ving skills using	g syntactically simple language.		
To re	ead and	write files.			
Outline of S	yllabus:	(per session pl	an)		
Module	Descr	ription			No of hours
1	Introdu	ction, Python	Basics		15
2	Functio	ons, Lists, Tup	les Dictionaries, Files		15
3	Expres	sions, Classes a	nd Objects Modules, Widgets, Gui Aj	pplications	15
	Total				45
					No. of
Module	Python	Fundamentals			Hours/Credits
					45/3
1	Introdu	ction, Python	Basics		15
	Introd	luction: The Py	thon Programming Language, History	, features,	3
			Running Python program, Debugging		
			ors, Semantic Errors, Experimental De		

	-	
	Formal and Natural Languages, The Difference Between Brackets, Braces, and Parentheses,	
	Variables and Expressions Values and Types, Variables, Variable Names and Keywords, Type conversion, Operators and Operands, Expressions, Interactive Mode and Script Mode, Order of	3
	Operations. Conditional Statements: if, if-else, nested if –else. Looping: for, while, nested loops	5
	Control statements: Terminating loops, skipping specific conditions. Strings: A String Is a Sequence, Traversal with a for Loop, String Slices, Strings Are Immutable, Searching, Looping and Counting, String Methods, The in Operator, String Comparison, String Operations.	4
2	Functions, Lists, Tuples, Dictionaries, Files	15
	Functions: Function Calls, Type Conversion Functions, Math Functions, Composition, Adding New Functions, Definitions and Uses, Flow of Execution, Parameters and Arguments, Variables and Parameters Are Local, Stack Diagrams, Fruitful Functions and Void Functions, Why Functions? Importing with from, Return Values, Incremental Development, Composition, Boolean Functions, More Recursion, Leap of Faith, Checking Types	5
	Lists: Values and Accessing Elements, Lists are mutable, traversing a List, Deleting elements from List, Built-in List Operators, Concatenation, Repetition, In Operator, Built-in List functions and methods	4
	Tuples and Dictionaries: Tuples, accessing values in Tuples, Tuple Assignment, Tuples as return values, Variable-length argument tuples, Basic tuples operations, Concatenation, Repetition, in Operator, Iteration, Built-in Tuple Functions Creating a Dictionary, Accessing Values in a dictionary, Updating Dictionary, Deleting Elements from Dictionary, Properties of Dictionary keys, Operations in Dictionary, Built-In Dictionary Functions, Built-in Dictionary Methods. Files: Text Files, The File Object Attributes, Directories	3
	Exceptions: Built-in Exceptions, Handling Exceptions, Exception with Arguments, User-defined Exceptions.	3
3	Expressions, Classes and Objects Modules, Widgets, GUI Applications	15
	Regular Expressions – Concept of regular expression, various types of regular expressions, using match function. Classes and Objects: Overview of OOP (Object Oriented Programming), Class Definition, Creating Objects, Instances as	4

Arguments, Instances as return values, Built-in Class Attributes,	,
Inheritance, Method Overriding, Data Encapsulation, Data Hiding	
Modules: Importing module, Creating and exploring modules, Math	
module, Random module, Time module	4
Widgets: Button, Canvas, Checkbutton, Entry, Frame, Label, Listbox,	,
Menubutton, Menu, Message, Radiobutton, Scale, Scrollbar, text,	, 4
Toplevel, Spinbox, PanedWindow, LabelFrame, tkMessagebox.	
Handling Standard attributes and Properties of Widgets.	
Layout Management: Designing GUI applications with proper Layout	t
Management features.	
Look and Feel Customization: Enhancing Look and Feel of GUI using	r
different appearances of widgets.	2

- 1. Paul Gries Jennifer Campbell Jason Montojo, Practical Programming, An Introduction to Computer Science Using Python 3.6, Third Edition. The Pragmatic Programmers, LLC.
- 2. Kenneth A. Lambert, B.L. Juneja, Fundamentals of Python, Cengage Learning India Pvt. Ltd. (2015).

- 1. James Payne, Beginning Python, (2010), Wrox programmer to Programmer.
- 2. James Payne, Python for Teenagers: Learn to Program Like a Superhero! Apress (2019).
- 3. Charles Dierbach, Introduction to Computer Science Using Python: A Computational Problem-Solving Focus, Wiley. (2013).

Program: B	S.Sc Ap	plied Statistics	& Data Analytics (Honours)	Semester : II	I
	Course: Applied Component 3 : Latex Course Code:			: USMAAS307	
Teaching S	-		Evaluation Scheme		
Lectur	re		Continuous Assessment and	End Semester I	Examination
(Hours	per	Credits	Evaluation (CAE)	(ESE) (Ma	arks-75
week	() ()		(Marks - 25)	in Question	Paper)
02		02	25	75	5
Learning O	bjective	s:	I		
• To i	introduce	e the learner to I	LaTex, a high quality open source	typesetting soft	ware
Course Out	comes:				
After comp	letion of	the course, lear	mers will:		
CO1 : (Ren	nember)				
To use Late	ex for typ	pe setting docun	nents.		
CO2 : (Und	lerstand))			
To fine-tun	e text, fo	ormulae page lay	out, proceed with managing com	plex documents	and using
modern PD	F feature	es.			
CO3 : (App	oly)				
Learn to us	e macros	s and styles to m	aintain a consistent document str	ucture while sav	ing typing
work.					
CO4: (Anal	lyse)				
		-	ooking tables, along with includin		iting complex
		las. Know how	to generate bibliographies and in	dexes with ease.	
CO5 : (Eva	,				
		• •	ocuments containing tables, figure	es, formulas, and	common book
			ossaries, and indexes.		
	-	: (per session pla	an)		
Module		ription			No of hours
1		g Started, Forma	atting Text and Creating Macros,	Designing	10
	Pages				
2		-	ng Images Creating Tables, Using	g Cross-	10
	Refere				
3		0	e, Using Fonts, Developing Large		10
		cing Documents	Troubleshooting, Using Online I	Resources.	
	Total				30
		1.0			No. of
Module	Applie	ed Component 3	(Latex)		Hours/Credits
1				D · · ·	30/2
1	Getting Pages	g Started, Forn	natting Text and Creating Mac	ros, Designing	10
	Getting	g Started with L	aTeX, Installing and using LaTeX	K, working	3
	with L	aTeX online usi	ng Overleaf, Accessing documen	tation	
					4

	Formatting Taxt and Creating Magness Working with Is right	
	Formatting Text and Creating Macros: Working with logical	
	formatting,	
	Understanding how LaTeX reads our input, printing out special	
	symbols, Modifying the text fonts	
	Creating our own commands, using boxes to limit the width of	
	paragraphs, breaking lines and paragraphs, turning off full	
	justification, Displaying quotes.	3
	Designing Pages: Creating a book with chapters, Defining the	
	margins, using class options, designing headers and footers, using	
	footnotes, breaking pages, enlarging a page, Changing the line	
	spacing, Creating a table of contents.	
2	Creating Lists, Including Images Creating Tables, Using Cross-	15
	References	
	Creating Lists: Building lists, Customizing lists.	2
	Including Images: Including an image, Managing floating images.	1
	Creating Tables: Using tab stops to write in columns, Typesetting	3
	tables, adding captions to tables, Using packages for further	
	customizations.	2
	Using Cross-References: Setting labels and references, using advanced	
	referencing, referring to labels in other documents, Turning references	
	into hyperlinks.	
	Listing Contents and References: Customizing the , Generating an	
	index, Creating a bibliography, Changing the headings.	2
3	Writing Math Formulae, Using Fonts, Developing Large Documents,	15
	Enhancing Documents Troubleshooting, Using Online Resources.	
	Writing Math Formulas: Writing basic formulas, typesetting multi-line	3
	formulas, Exploring the wealth of math symbols, Building math	-
	structures.	2
	Using Fonts: Using comprehensive font bundles, using specific font	_
	families, Using arbitrary fonts.	2
	Developing Large Documents: Splitting the input, creating front and	-
	back matter, designing a title page, Working with templates.	1
	Enhancing Your Documents Further: Using hyperlinks and	Ĩ
	bookmarks, designing headings, Coloring our documents.	
	Troubleshooting: Understanding and fixing errors, Handling	
	warnings, Avoiding obsolete classes and packages. General	1
	troubleshooting.	1
	Using Online Resources: Web forums,	1
		1
	Lists of frequently asked questions, Mailing lists, TeX user group	
	sites. Websites for LaTeX software and editors, Graphics galleries,	
	LaTeX blogs.	

- 1. Stefan Kottwitz LaTeX Beginner's Guide-Packt Publishing (2021).
- 2. Dilip Datta (auth.) LaTeX in 24 Hours_ A Practical Guide for Scientific Writing-Springer International Publishing (2017).

- 1 Leslie Lamport The LaTeX companions. Bind 4 _ LaTeX _ a document preparation system, user's guide and reference manual (Bookmarked)-Addison-Wesley (2001)
- 2. Stefan Kottwitz LaTeX Cookbook, Packt Publishing (2015).
- 3. Grätzer, George Practical LaTeX-Springer (2014).

Program: E	B.Sc Ap	plied Statistics	& Data Analytics (Honours)	Semester : II	I	
Course: Statistics Practical 3 (Based on Courses USMAAS301, Course Code				:		
USMAAS302 and US				USMAASP3	USMAASP3123	
Teaching S		,	Evaluation Scheme			
			Continuous Assessment and	End Semester I	Examination	
Practic			Evaluation (CAE)	(TEE) (Mai	rks-80%	
(Hours	-	Credits	(Marks - 20%)	in Question	Paper)	
week	()		10 Marks in Each Component	40 Marks in Eac	ch Component)	
06		03	30	12	0	
Learning	Objectiv	ves and Course (Outcomes:			
As per C	ourses U	SMAAS301, U	SMAAS302 AND USMAAS30	3		
					No. of	
Module	Statist	ics Practical 3 (Based on Courses USMAAS30	1, USMAAS302	Hours/Credits	
	and US	SMAAS303).			90/3	
Sr. No.	Based	on Course US	MAAS301.			
1	Mome	nt Generating F	unctions.			
2	Cumul	Cumulant Generating Functions.				
3	Probab	Probability Generating Functions				
4	Chebyshev's Inequality.					
5	Law of	Law of Large Numbers 1				
6	Law of	Law of Large Numbers 2				
7	Joint p	Joint probability Distributions 1				
8	Joint P	Joint Probability Distributions 2				
9	Transf	Transformation of Variables 1				
10	Transf	ormation of Var	iables 2			
Sr. No.	Base	Based on Course USMAAS302.				
1	Resu	ts of SRSWR.				
2	Resu	ts of SRSWOR				
3	Use of	of Random Num	ber tables.			
4	Samp	ling for Variabl	es			
5	Samp	ling for Attribu	tes			
6	Strati	fied Sampling 1	· · · · · · · · · · · · · · · · · · ·			
7	Strati	fied Sampling 2	<u></u>			
8	Ratio	Method				
9	Regre	Regression Method				
10	Syste	matic Sampling				
Sr. No.	Based	on Course US	MAAS303.			
1	Contro	ol Charts 1				
2	Contro	ol Charts 2				
3	Contro	ol Charts 3				
4	Contro	l Charts 4				

5	Acceptance Sampling Plans 1
6	Acceptance Sampling Plans 2
7	PERT – CPM 1
8	PERT – CPM 2
9	PERT – CPM 3
10	PERT – CPM 4

Program	: B.Sc	Applied Statistics	And Data Analytics (Honours)	Semester : III	
			ased on Courses USMAAS304		AASP345
	and US	MAAS305.			
		Teaching Scheme	Evaluation Sch	ieme	
Prac	tical		Continuous Assessment and	End Semester Examinations	
			(ESE) (809	SE) (80%	
we	ek)		(20%)	40 Marks in Each Component	
04	1	2	10 Marks in Each Component 20	00	
-		tives and Course O		80	
	0 0	USMAAS304 AN			
Module	r	matics Practical 3			No of hours
PRACTI	CALS				60
Sr. No.	Based	on Course USMA	AS304.		
1	Semig	roups and Monoid	s, Groups, Subgroups, Cyclic G	roups.	
2	Homomorphism's, Cosets and Normal Subgroups.				
3	Permutation Functions, Rings and Fields.				
4	Boolean Expressions and Boolean Functions, Identities, Duality, Abstract Definition of a Boolean Algebra.			efinition of	
5	Comb	ination of Gates, C	an functions, Functional Comple Circuits, Adders, Minimization o The Quine-McCluskey Method,	-	
6	Representation of Boolean functions, Functional Completeness, Logic Gates,			` ,	
7	Minimization of Circuits. Karnaugh Maps, Don't Care Conditions, The Quine- McCluskey Method.				
8	Languages and Grammars: Introduction, Phrase Structure Grammars with Types, Derivation Tress, Backus-Naur Form.			vpes,	
9	Finite-State Machines with Output: Finite State Machines with Outputs and with No Output. Finite-State Automata, Language Recognition by Finite-State Machines Language Recognition: Kleene's Theorem, Regular Sets and Regular Grammars.				
10	Turing Machines, Computing Functions with Turing Machines, Different Types of Types of Turing Machines, The Church-Turing Thesis.				
Sr. No.	Based	l on Course USM	AAS305.		
1	Matrices, Dot product and Matrix Multiplication.				
2	Solutions of Linear System of Equations, Inverse of a Matrix. LU- Factorization				

3	Applications: Markov Chains ; Linear Economic Models
4	Determinants, Cofactor Expansion and Applications.
5	Vectors in a plane.
6	Linear transformations.
7	Application in R2 and R3: Computer Graphics, Cross Product in R3, lines and Planes.
7	Vector Spaces, Subspaces.
8	Linear Independence, Basis and Dimensions.
9	Homogeneous Systems, Rank of a matrix, Coordinates and Change of Basis,
10	Orthonormal Bases in Rn, Orthogonal Complements. QR-factorization; Least Squares

Program: B.Sc.	- Applied Statistics	And Data Analytics (Honours)	Semester : III	
			Course Code:	
			USMAASP36	
	Teaching Scheme	Evaluation Sche	eme	
Practical (Hours per week)	Credits	Continuous Assessment and Evaluation (CAE) (20%) 10 Marks	End Semester Examinat (ESE (80%) 40 Marks	ions
02	1	10	40	
Learning Object	ctives and Course O	utcomes:		
-	USMAAS306.			
Module	Python Practical 1			o of
PRACTICALS				ours 30
	Deced on Course I			30
Sr. No.	Based on Course U			
1	Converting °C ter	nperature to °F.		
2	To carry out arithmetic calculations.			
3	To check whether given number is odd or even.			
4	To check whether given number m is divisible by n or not.			
5	To find maximum of 2 numbers or 3 numbers, sum of digits of a number.			
6	To find area of triangle and circle.			
7	To find roots of quadratic equation.			
8	To check whether	integer is prime or not.		
9	To find mean, Ge	ometric mean and Harmonic Me	an of n numbers.	
10	To prepare multip	lication table.		
11	To solve simultan	eous linear equations.(two equat	ions in two variables)	
12	To evaluate simpl	e and compound interest		
13	To solve transcendental equations using Newton-Raphson method.			
14	To evaluate $exp(x)$, $sin(x)$, $log(x)$ etc. using Taylor's series expansion.			
15	To convert decimal number to equivalent binary number.			
16	To generate Fibonacci series like 0, 1, 1,2,3,5			
17	To combine given two strings using string function.			
18	To find factorial of	of integer number (both recursive	e and non-recursive)	
19	To find the value of Xn where n is integer.(both recursive and non-recursive)			
20	To find GCD of t	wo integer numbers(both recursi	ve and non-recursive)	

21	To find maximum/minimum of n numbers.(non-recursive)
22	To obtain addition of two matrices, multiplication of two matrices.
23	To find mean, median, variance and coefficient of variation of frequency distribution.
24	To find correlation coefficient and line of best fit of Y on X (X on Y) for a given bivariate data.
25	To sort the given data in increasing/decreasing order of magnitude.
26	To obtain median of given n observations.
27	To test palindrome string using string function.
28	To sort a string using string function.
29	To search string using string function.
30	To check for pangrams. (A sentence which contains the alphabets at least once.)
31	To print the items in a list
32	To Check for Armstrong numbers
33	To write a recursive function to print the factorial.
34	To write a function which will reverse the value/ use defined value.
35	To Define a function that computes the length of a given list or string.
36	To sort (ascending and descending) a dictionary by value.
37	To concatenate dictionaries to create a new one.
38	To sum all the items in a dictionary.
39	To print a specified list after removing the 0th, 2nd, 4th and 5th elements.
40	To Write a Python program to clone or copy a list.
41	To Design a class that will store and display the information of a student.
42	to read an entire text file.
43	To append text to a file and display the text.
44	To read last n lines of a file.
45	Define a procedure histogram() that takes a list of integers and prints a histogram to the screen.

	-	& Data Analytics (Honours)	Semester : IV
Course: Probabil	ity Distribution		Course Code: USMAAS40
Teaching Scheme		Evaluation Scheme	
Lecture		Continuous Assessment and	End Semester Examination
(Hours per	Credits	Evaluation (CAE)	(TEE) (Marks-75
week)		(Marks - 25)	in Question Paper)
03	03	25	75
Learning Objective	s:		
Unit 1:			
To make the lear	ner aware of		
1. Continuous p	orobability distri	butions	
2. Uniform dist	ribution		
3. Normal distri	ibution, Standar	d normal distribution, Lognorma	l distribution.
4. Exponential	distribution. Ga	mma and Beta distributions	
5. Fitting of dis	tributions.		
Unit 2:			
To make the lear	ner aware of		
1. The use a chi	square test to e	valuate the fit of a hypothesized	distribution.
	-	the shape of the t distribution an	
	ne degrees of fre	-	
•	-	value of t to use in a confidence	interval
4. Use the t calc	culator to find th	ne value of t to use in a confidence	e interval
Unit 3:			
To make the lear	ner aware of		
	F-distribution		
		e F-test and the F-distribution.	
Course Outcomes:			
	on of the course	e, learners would be able to:	
(CO1:Remember)			
	f the Chi Square	distribution in terms of squared	normal deviates
(CO2:Understand)		distribution in terms of squared	normal de viates
· · · · · · · · · · · · · · · · · · ·		outions and application of chi squ	uare and t distribution
		butions and applications of the F	
	1 0	ch must be satisfied when using	
(CO3:Apply)	conditions will	en must be satisfied when using	the em-square test.
	al limit theorem		
	al limit theorem		
(CO4:Analyse)	a of distribution		
	g of distribution		a normal distribution
		shape of the t distribution and the	
	-	the Chi Square distribution chan	iges as its degrees of
freedom in	crease.		
(CO5: Evaluate)	1 1.11. 1	s for a continuous uniform probe	
<i>i)</i> Compute pr			

ii) Co	mpute the expected value and variance for such a distribution.	
	mpute probabilities using a normal probability distribution.	
	mpute probabilities using an exponential probability distribution	
	Syllabus: (per session plan)	
Module	Description	No of hours
1	Standard Continuous Distributions II	15
2	Exact Sampling Distributions I (Chi Square and t)	15
3	Exact Sampling Distributions II (F distribution and Fishers Z	15
	transformation)	
	Total	45
Module	Probability Distributions IV	No. of Hours/Credits 45/3
1	Standard Continuous Distributions II	15
	✤ Rectangular, Triangular, And Normal, Lognormal, Gamma (1 &	8
	2 parameters), Beta (Type I and Type II).	
	 The following aspects of the above distributions (wherever 	
	applicable) to be discussed:	
	 Mean, Median, Mode, Mean absolute deviation & Standard 	
	deviation. Moment Generating Function, Additive property,	
	Cumulant Generating Function. Moments (up to order 4),	
	Recurrence relation for central moments, Skewness and	
	Kurtosis. Fitting of Distributions. Interrelation between the	
	distributions.	
	 Distribution of linear function of independent Normal variables. 	7
	Fitting of Normal Distribution.	
	 Central Limit theorem for i.i.d. random variables. 	
2	Exact Sampling Distributions : Chi Square & Students t	15
-	Chi-Square Distribution:	7
	 Concept of degrees of freedom. Mean, Median, Mode & Standard 	,
	deviation. Confidence interval for the variance of a Normal	
	population.	
	 Moment generating function, Cumulant generating function. 	
	Additive property, Distribution of the sum of squares of	
	independent Standard Normal variables. Sampling distributions of	
	sample mean and sample variance and their independence for a	
	sample drawn from Normal distribution (without proof).	
	 Application of Chi-square Distribution. 	
	* Application of Chi-square Distribution.	
	 Mean, Median, Mode & Standard deviation. 	8
	 Distribution of ratio of a Standard Normal variable to the square 	
	root of an independent Chi-square divided by its degrees of	

	freedom. Asymptotic properties. Student's t.		
	 Application of t-Distribution. 		
	Confidence interval for: Mean of Normal population; Difference		
	between means of two independent Normal populations having		
	the same variance.		
3	Exact Sampling Distributions: F, Interdependence of Normal, Chi-	15	
	square, t, F distributions, Fisher's Z- transformation		
	♦ Mean, Mode & Standard deviation. Distribution of: Reciprocal of	7	
	an F variate, Ratio of two independent Chi-squares divided by		
	their respective degrees of freedom.		
	Confidence interval for ratio of variances of two independent	3	
	Normal populations. Interrelationship of F with: t-distribution,		
	Chi-square distribution & Normal distribution.		
	 Applications of F- distribution. 	5	
	Fisher's Z- transformation and its application.		

- 1. Ken Black, Business Statistics for Contemporary Decision Making, Wiley Plus,9th Edition.
- 2. Jay L. Devore, Probability and Statistics for Engineers and the Sciences, Cengage Learning, 9th edition.
- Roxy Peck, Jay L. Devore, Statistics: The Exploration & Analysis of Data, Cengage Learning, 7th edition.

- 1. A. M. Mood, F.A. Graybill, D. C. Boyes, Introduction to the theory of statistics, McGrawHill Book Company, 3rd Edition.
- 2. R.V.Hogg, A.T. Craig; Introduction to Mathematical Statistics: Collier McMillan Publishers
- 3. R.V.Hogg, E. A.Tannis, Probability and Statistical Inference: Collier McMillan Publishers
- 4. John E. Freund's I. Miller, M. Miller; Mathematical Statistics, Pearson Education Inc. 6th Ed.
- 5. P.G. Hoel; Introduction to Mathematical Statistics, John Wiley &Sons Inc. 4th Edition.
- 6. J. Medhi; Statistical Methods: An Introductory Text: 2nd Edition; Wiley Eastern Ltd.
- 7. S.C. Gupta, V.K. Kapoor; Fundamentals of Mathematical Statistics: 8th Ed. Sultan Chand & Sons.
- 8. A.M. Goon, M.K. Gupta, B. DasGupta; An Outline of Statistical Theory Vol. 1: 3rd Edition; The World Press Pvt. Ltd.
- 9 Goon A.M., Gupta M.K. and Das Gupta B. (1986): Fundamentals of Statistics, Vol.II, World Press, Calcutta.

Program: B	.Sc Applied St	atistics	& Data Analytics (Honours)	Semester : IV
Course: : Design of Experiments Course Code:				
Teaching So	cheme		Evaluation Scheme	
Lectur	re		Continuous Assessment and	End Semester Examination
(Hours	per Cre	dits	Evaluation (CAE)	(ESE (Marks-75
week)		(Marks - 25)	in Question Paper)
03	0.	3	25	75
Learning O	bjectives:			
To make the	e learner aware o	of		
• Unders	tand what betwe	en-grou	p and within-group variability co	onsist of and represent.
• Unders	tand the role of	betweer	-group and within-group variabil	ity in testing differences
between	n group means.			-
• Unders	tand what 'ANC	VA' sta	ands for, and why.	
• Unders	tand why, in test	ting the	difference between means, the in	ferential statistic is called
the F-ra	-	U		
• Unders	tand the characte	eristics	of the theoretical distribution of I	F-ratios
Course Out	comes:			
After comp	letion of the cou	rse, leai	mers would be able to:	
(CO1:Reme	ember)			
i) Rem	nember assumpti	ons of A	ANOVA, mathematical models.	
(CO2:Unde	rstand)			
i) Und	erstand concept	of Anal	ysis of Variance (ANOVA)	
(CO3:Apply	y)			
i) App	ly ANOVA and	design	of experiments in different situat	ion.
(CO4:Analy	yse)			
i) Disc	cuss a Statistical	Test for	r One-Way ANOVA and Two –V	Vay ANOVA
(CO5:Evalu				
i) com	pute last square	estimat	es of unknown parameters and th	eir variances
Outline of S	Syllabus: (per sea	ssion pl	an)	
Module	Description			No of hour
1	ANOVA			15
2	CRD and RBD	with a	nd without interactions	15
3	Latin Square D	esign a	nd Factorial Designs.	15
	Total			45
				No. of
Module	Design of Ex	kperime	nts	Hours/Credit
				45/3
1	ANOVA			15
	✤ Introduction	on, Use	s, Cochran's Theorem (Statemen	t only). 6
	✤ One-way	classific	ation with equal & unequal observation	rvations per
	class. Two	o-way c	lassification with one observatior	n per cell.
	✤ Mathemat	ical Mo	del, Assumptions, Expectation of	f various sums

		
	of squares- test, Analysis of variance table.	
	 Least square estimators of the parameters, Variance of the 	5
	estimators,	
	 Estimation of treatment contrasts, Standard Error and Confidence 	4
	limits for elementary treatment contrasts.	
2	Design Of Experiments, Completely Randomized design &	15
	Randomized Block Design.	
	Design of Experiments:	7
	 Concepts of Experiments, Experimental unit, Treatment, Yield, 	
	Block, Replicate, Experimental Error, Precision. Principles of	
	Design of Experiments: Replication, Randomization & Local	
	Control.	
	 Efficiency of design D1 with respect to design D2. 	
	Choice of size, shape of plots & blocks in agricultural &	
	nonagricultural experiments.	
	Completely Randomized Design (CRD), Randomized Block Design	8
	(RBD):	
	Mathematical Model, Assumptions, Expectation of various sums of	
	squares, F-test, Analysis of variance table.	
	 Least square estimators of the parameters, Variance of the 	
	estimators, Estimation of treatment contrasts, Standard error	
	and Confidence limits for elementary treatment contrasts.	
	Efficiency of RBD relative to a CRD. Missing plot technique	
	for one missing observation in case of CRD, RBD.	
3	Latin Square Design, Factorial Experiments	15
	Latin Square Design (LSD):	7
	 Mathematical Model, Assumptions, Expectation of various 	
	sums of squares, F-test, Analysis of variance table. Least	
	square estimators of the parameters,	
	 Variance of the estimators, Estimation of treatment contrasts, 	
	Standard error and Confidence limits for elementary treatment	
	contrasts. Efficiency of the design relative to RBD, CRD.	
	 Missing plot technique for one missing observation in case of 	
	LSD.	
	Factorial Experiments.	8
	 Definition, Purpose & Advantages. 2², 2³ Experiments. 	~
	Calculation of Main & interaction Effects.	
	 Yates' method. Analysis of 2² & 2³ factorial Experiments. 	
	 Confounding. 	
1	· comounding.	

- 1. Dr. Parimal Mukhopadhyay, Applied Statistics: New Central Book Agency (P) Ltd. 2nd Edition (2001).
- 2. Douglas C Montgomery, Design and Analysis of Experiments, John Wiley & Sons. 6th Edition

- 1 Das, M.N. and Giri J. (1986) : Design and Analysis of Experiments, Springer Verlag.
- 2 Kempthorne O. (1965) : The Design and Analysis of Experiments, Wiley Eastern.
- 3. Cochran W.G. and Cox Experimental Design, John Wiley and G.M. (1957) Sons.
- 4. Walter T Federer, Experimental Design, Theory and Application: Oxford & IBH Publishing Co. Pvt. Ltd.
- 5. B.J. Winer, Principles in Experimental Design: McGraw Hill Book Company

Program: B.S	c Applied Statistic	cs & Data Analytics (Honours)	Semester : IV
Course: Oper	ourse: Operations Research I Course Code: USMA		Course Code: USMAAS403
Teaching Sch	neme	Evaluation Scheme	
Lecture		Continuous Assessment and	End Semester Examination
(Hours pe	er Credits	Evaluation (CAE)	(ESE) (Marks-75
week)		(Marks - 25)	in Question Paper)
03	03	25	75
Learning Obj	ectives:		
To make the	learner		
• Identify	the special features	of a model that make it a linear prog	gramming model.
• aware of	the kinds of problem	ms linear programming can be used	to solve.
• Learn to	formulate and solve	e linear programming models for sin	nple problems.
• Aware of	f the concepts of all	location problems and to solve them	L.
Course Outco	omes:		
After comple	tion of the course, le	earners would be able to:	
(CO1:Remen	nber)		
Know how to	Formulate the LPP	2.	
(CO2:Unders	tand)		
Conceptualiz	e the feasible regior	n for a given LPP.	
(CO3:Apply)			
Solve the LP	P with two variables	s using graphical method.	
Solve the LP	P using simplex met	thod.	
Solve a linear	r programming with	unrestricted-in-sign variables.	
analyze small	l changes to a linear	programming problem.	
(CO4:Analys	e)		
Formulate the	e dual problem from	n primal.	
•	ensitivity of a decis	ion variable.	
(CO5:Evalua			
		given allocation problem.	
	llabus: (per session	plan)	
Module	Description		No of hours
1	Linear Programming	g Problem	15
2	Integer Programmin	g Problem, Sensitivity Analysis	15
3 '	Transportation Prob	lem, Assignment Problem, Sequenc	ing 15
,	Total		45
			No. of
Module	Operations Researc	ch I	Hours/Credit
			45/3
1	Linear Programmir	ng Problem (L.P.P.)	15
T	Mathematical Form	nulation: Maximization & Minimiza	tion. Concepts 5
		le Solution, Basic Feasible Solution	-
	solution. Graphical	Solution for problems with two van	riables.

	Simplex method of solving problems with two or more variables. Big	5
	M method.	
	Solution of LPP for unrestricted variables	
	Concept of Duality. Its use in solving L.P.P. Relationship between	5
	optimum solutions to Primal and Dual. Dual simplex algorithm.	
	Economic interpretation of Dual.	
2	Integer programming problem (IPP) and Sensitivity analysis	15
	Integer programming problem (IPP):	7
	Introduction, solution of IPP using	
	1. Graphical method	
	2. Gomory's Method.	
	Sensitivity Analysis: (Proofs are not expected)	8
	1. Variation in the price vector "c".	
	2. Variation in requirement vector "b".	
	3.Addition of a new variable to the LPP.	
3	Transportation Problem, Assignment Problem, Sequencing	15
	Transportation Problem:	7
	Concept, Mathematical Formulation. Concepts of Solution, Feasible	
	Solution. Initial Basic Feasible Solution by North-West Corner Rule,	
	Matrix Minima Method, Vogel's Approximation Method. Optimal	
	Solution by MODI Method. Optimality test, Improvement procedure.	
	Variants in Transportation Problem: Unbalanced, Maximization type.	4
	Assignment Problem:	
	Concept. Mathematical Formulation Solution by: Complete	
	Enumeration Method and Hungarian method. Variants in Assignment	
	Problem: Unbalanced, Maximization type. Travelling Salesman	
	Problem.	
	Sequencing:	3
	Processing n Jobs through 2 Machines;	
	Processing n Jobs through 3 Machines;	
	Processing 2 Jobs through m Machines	

- 1. Taha Hamdy A., Operations Research: Prentice Hall of India Pvt. Ltd., 10th edition.
- 2. S.D. Sharma, Operations Research, KedarNath Ram Nath & Company, 11th edition.
- 3. Richard Bronson, Schaum Series book in O.R., Tata McGraw Hill Publishing Company Ltd. 2nd edition,

- 1. J. K. Sharma, (2001) Quantitative Techniques for Managerial Decisions, MacMillan India Ltd.
- 2. J K Sharma, (1989), Mathematical Models in Operations Research, Tata McGraw Hill Publishing Company Ltd.

- 3. Kantiswaroop and Manmohan, Gupta, Operations Research, 12th Edition, S Chand & Sons
- 4. Maurice Sasieni, Arthur Yaspan and Lawrence Friedman, (1959), Operations Research: Methods and Problems, John Wiley & Sons.
- 5 Vora N. D. Quantitative Techniques in Management, 3rd edition, McGraw Hill Companies.
- 6. Banerjee B. Operation Research Techniques for Management, First edition, Business Books

Program: B.Sc Applied Statistics & Data Analytics (Honours)			Semester : IV
Course: Numerical Methods			Course Code: USMAAS404
Teaching Scheme	Teaching Scheme Evaluation Scheme		
Lecture		Continuous Assessment and	End Semester Examination
(Hours per	Credits Evaluation (CAE)		(ESE) (Marks-75
week)		(Marks - 25)	in Question Paper)
03	03 25		75

Learning Objectives:

• To provide the numerical methods of solving the non-linear equations, interpolation, differentiation, and integration.

- To improve the student's skills in numerical methods by using the numerical analysis software and computer facilities.
- To Understand Accuracy and precision with examples.
- To locate the roots of an equation using Graphical, Bisection and False Position methods.
- Understand one-point iterative method to find True roots.
- Learn methods like Newton Rapson's Method, Multiple Roots and Secant method.
- To find unknowns using Gauss Elimination method, Gauss Jordan method and Gauss Seidel method
- Understand the concept of regression method like Linear Regression, Polynomial Regression and Multiple Regression method to fit curve into straight line.
- To find inverse matrix using LU Decomposition method.
- To Learn Spline types like Linear, quadratic and cubical Spline

Course Outcomes:

After completion of the course, learners would be able to:

(CO1: Remember)

The learner will know the difference between Accuracy and Precision and types of errors. (CO2: Understand)

How to solve fixed point iteration method to obtain the true roots.

The methods of finding roots using Graphical method, Bisection method and False position method.

And other such methods.

The advantages and disadvantages of using different methods to compute the roots.

(CO3: Apply)

Solve a given expression using different methods learnt to compute the roots.

(CO4: Analyse)

Solve a Linear System of equation using Gauss Jordan and Gauss Seidel method.

(CO5: Evaluate)

Compute the roots using Graphical method, Bisection method False position method, True roots using Open method: Newton's Rapson method, secant method and multiple Newton Rapson method, Gauss Elimination Method.

Solve a regression methods fit a curves using linear regression, polynomial regression and Multiple regression method. To solve Linear spline, quadratic and cubical spline.

Outline of S	Syllabus: (per session plan)	
Module	Description	No of hours
1	Preliminaries, High Speed Computations, Transcendental and Polynomial Equations	15
2	System of Linear Algebraic Equations and Eigen Value Problems.	15
3	Interpolation and approximation, Curve Fitting.	15
	Total	45
Module	Numerical Analysis	No. of Hours/Credits 45/3
1	Preliminaries, High Speed Computations, Transcendental and Polynomial Equations.	15
	Binary Numbers, Error Analysis, Computer Arithmetic, Machine Computation and Flow Charts.	4
	Bisection Method, Iteration Methods Based on first degree and Second Degree equations.	4
	Rate of Convergence, General Iteration Methods.	2
	Methods of Complex Roots	1
	Polynomial equations/ approximations.	3
2	System of Linear Algebraic Equations and Eigen Value Problems	15
	Introduction, Direct Methods, Error Analysis for Direct Methods, Iteration Methods.	5
	Jacobi, Givens and Householders Methods for symmetric matrices.	4
	Rutishauser Method for Arbitrary matrices.	3
	Power method, Inverse Power Method.	3
3	Interpolation and Approximations, Curve Fitting.	15
	Introduction, Lagrange and Newton Interpolations.	4
	Finite Difference Operators. Interpolating Polynomials using Finite Differences.	4
	Interpolations: Hermite; Piecewise and Spline, Bivariate. Approximation, Least Square Approximation, Uniform	4
	Approximation, Rational Approximation.	3

- 1. M.K.Jain, S.R.K. Iyengar, R.K.Jain, Numerical Methods, New Age International Publishers, 7th edition.
- 2. John Mathews, Kurtis D. Fink, Numerical Methods using Matlab, Pearson. 4th edition.

SUPPLEMENTARY READINGS:

 S.S. Sastry - Introductory methods of numerical analysis-, PHI Learning Pvt Ltd, 5th edition (2012).

- 2. E Balagurusamy, Numerical Methods, McGraw Hill Education 1 July 2017.
- 3. James F. Epperson An Introduction To Numerical Methods And Analysis 2nd Edition. (2013).
- 4. Mukherjee, Kr. Kalyan, Numerical Analysis. New Central Book Agency 2nd Edition, (2011

-		& Data Analytics (Honours)	Semester : IV
			Course Code: USMAAS405
Teaching Sch	eme	Evaluation Scheme	
Lecture		Continuous Assessment and	End Semester Examination
(Hours per	c Credits	Evaluation (CAE)	(ESE) (Marks-75
week)		(Marks - 25)	in Question Paper)
03	03	25	75
Learning Ob	jectives:		
• To introd	uce the idea of eigen	values and eigenvectors of a matr	ix to the learner.
• Use Linea	r Algebra in various	scientific and mathematical appl	ications.
• To make	use of matrices to sol	ve systems of linear equations; p	erform operations with matrices,
calculate	the inverse of a non-	singular matrix, and calculate the	determinant of a square matrix.
		ncept of a vector space and to per	-
	-	and find a spanning set of vector	
		ncept of subspaces of a vector spa	
	and determine its dir the rank and nullity	nension; find the subspaces assoc	ciated with a matrix, and
	•	on and find the matrix associated	with it: determine the kernel
		find the inverse of a transformation	,
-		; calculate the change of basis ma	-
Course Outco			
After complet	ion of the course, lea	rners would be able to:	
(CO1:Remen	nber)		
Eigenvalues	and eigenvectors, di	agonalizable matrices, systems of	f linear ordinary differential
equations ro	w/column space, vec	tor spaces.	-
(CO2:Unders	tand)		
The method of	of solving a set of line	ear equation's, concepts of base,	dimension, kernel, range.
Matrix of line	ear transformation.		
(CO3:Apply)			
The knowled	ge of eigenvalues / ve	ectors to a linear transformation.	
(CO4:Analys	e)		
Solve a system	n of linear equations		
(CO5:Evalua	te)		
Characteris	tic polynomial of a tr	ansformation matrix	
Kernel and	image spaces of a lin	ear transformation	
The algebra	of matrices in order	to solve applied and theoretical p	problems using inverses of
matrices, de	eterminants and other	algebraic operation	
Outline of Syl	labus: (per session p	lan)	
Module	Description		No of hours
	Eigenvalues, Eigenve	ctors and Diagonalization.	15
1 E		n and Matriana	15
	inear Transformation	n and Matrices	13
2 I	inear Transformation		15

		No. of
Module	Linear Algebra 2	Hours/Credits
		45/3
1	Eigenvalues, Eigenvectors and Diagonalization	15
	Eigenvalues and Eigenvectors.	
	Diagonalization	
	Applications: The Fibonacci Sequence, Differential Equations,	
	Quadratics Forms, Comic Sections, Quadratics Surfaces.	
2	Linear Transformation and Matrices	15
	Definition and Linear transformation and Matrices. Examples.	
	The Kernel and Range of a Linear Transformation.	
	The Matrix of a Linear Transformation.	
3	Matlab For Linear Algebra	15
	MATLAB, Entering and Displaying a Matrix, Solving Systems of	
	Linear Equations, Dot Product, Norm, Angle, Distance.	
	Matrix Operations, Computational Considerations, Inverse of a Matrix	
	Solving Systems of Equations Using Matrix Inverse, Cryptography,	
	Transformations Defined by Matrices.	
	Fractals, Leontief I/O Model, Markov Chains,	
	Determinants, Cramer's Rule.	
	Eigenvalues and Eigenvectors.	
	Linear Combinations, Dependence, Basis, Rank.	
	Projection, Gram-Schmidt Orthogonalization., QR Factorization	
	Kernel and Range, Inner Product, Non-Euclidean Geometry.	
	Space–Time Travel	
	Pseudoinverse and Least Squares Curves.	
	LU Decomposition.	
	Condition Number of a Matrix.	
	Jacobi and Gauss-Seidel Iterative Methods.	
	Singular Value Decomposition. Cross Product.	
	MATLAB Commands, Functions, and M-Files.	
	The Linear Algebra with Applications Toolbox M-Files.	

- 1. Bernard Kolman David Hill, (2014), Elementary Linear Algebra with Applications, 9th Edition, Pearson.
- 2. Gareth Williams, (2019), Linear Algebra with Applications, 9th Edition, Jones and Bartlett Learning.

- 1. Gilbert Strang, Introduction to Linear Algebra 5th Edition, Wellesley Cambridge Press
- 2. Gilbert Strang, (2019) Linear Algebra and Learning from Data, Wellesley- Cambridge Press
- 3. Kenneth Kuttler, (2020), Linear Algebra, Theory and Applications. World Scientific.

vanced R cheme	Evolution Coheren	Course Code: USMAAS406
	Evolution Calance	
	Evaluation Scheme	
re	Continuous Assessment and	End Semester Examination
per Credits	Evaluation (CAE)	(ESE) (Marks-75
)	(Marks - 25)	in Question Paper)
03	25	75
ojectives:		
ice the learner to the p	owerful software used for statistical	calculations and data analysis
hen the knowledge an	d understanding of the R software.	
he learner what makes	R different and special from other l	languages.
comes:		
etion of the course, le	arners would be able to:	
member)		
rence between an obje	ect and its name	
nat data structures are	?	
derstand)		
difference between the	e object and its name is important.	
w a datastructures fits	together.	
most important OO s	ystems S3,S4 and R6.	
ply)		
er will be able to use	the fine detail of functions and envir	onments.
er will know how to p	ull datastructures apart using subset	ting.
the condition system	which powers messages, warnings a	nd errors.
alyse)		
erful functional progra	mming paradigm which can replace	many loops.
aluate)		
nd and remove perfor	mance bottlenecks.	
	plan)	
_		No of hours
	<u> </u>	15
		15
Metaprogramming a	nd Techniques	15
Total		45
		No. of
Advanced D		Hours/Credit
Auvanceu K		Hours/Credits
Foundations and Fu	actional Programming	45/3
	es and values, vectors, subsetting, ients, Conditions. Vocabulary, Style	
Lunationa Larriage	THE TATION AND A T	
	03bjectives:ace the learner to the phen the knowledge andhe learner what makescomes:letion of the course, lemember)rence between an objehat data structures are?derstand)difference between thew a datastructures fitse most important OO sply)her will be able to use thea datastructures fitse most important OO sply)her will be able to use thea datastructures fitse most important OO sply)her will be able to use thea datastructures fitsbe able to use theher will be able to use theher will know how to pthe condition systemaluate)ind and remove perforSyllabus: (per session pDescriptionFoundations and Fundobject Oriented ProgMetaprogramming atTotalAdvanced RFoundations and Fundobject Oriented Prog	03 25 bjectives: ince the learner to the powerful software used for statistical hen the knowledge and understanding of the R software. he learner what makes R different and special from other I comes: ince the course, learners would be able to: inember) rence between an object and its name hat data structures are? derstand) difference between the object and its name is important. w a datastructures fits together. e most important OO systems S3,S4 and R6. ply) ter will be able to use the fine detail of functions and envir the will know how to pull datastructures apart using subset the condition system which powers messages, warnings a alyse) erful functional programming paradigm which can replace aluate) ind and remove performance bottlenecks. Syllabus: (per session plan) Description Foundations and Functional Programming Metaprogramming and Techniques Total

	Functional Programming: Functional, Function Factories, Function	
	Operators.	
2	Object Oriented Programming	15
	Introduction, Base types, S3,	6
	RC, R6	5
	S4, Trade-offs.	4
3	Metaprogramming and Techniques	15
	Metaprogramming: Introduction, Big picture, Expressions	8
	Techniques: Introduction, Debugging, Measuring and Improving	7
	performance.	

1. Hadley Wickham, Advanced R-Taylor & Francis, (Chapman & Hall, CRC the R series (CRC Press) (2019) Ed.2.

- 1. Hadley Wickham, Advanced R-Taylor & Francis, (Chapman & Hall, CRC the R series (CRC Press) (2015) Ed.1.
- 2. Hadley Wickham, Garrett Grolemund R for Data Science_ Import, Tidy, Transform, Visualize, and Model Data-O'Reilly Media (2017)

Program: B.S	c Applied Statistics	& Data Analytics (Honours)	Semester : IV	
Course: Appl	Course: Applied Component 4 : Basic Data Mining Concepts Course Code: USMAAS4			
Teaching Sch	eme	Evaluation Scheme		
Lecture	ture Continuous Assessment and End Semester Examination			
(Hours pe	er Credits	Evaluation (CAE)	(ESE) (Marks-75	
week)		(Marks - 25)	in Question Paper)	
03	03	25	75	
Learning Obj	ectives:			
• To introdu	uce the learner to vario	ous data mining concepts and alg	orithms.	
• To Empha	asize the use of data m	ining concepts in real world app	lications with large data base	
componen			C	
-		inking, problem-solving, and de	cision-making skills.	
Course Outco		0,1 0,	e	
After complet	tion of the course, lea	rners will:		
CO1 : (Reme				
To use data m	nining principles and i	nethods / techniques.		
To use data m	nining as a cutting edg	e business intelligence method.		
CO2 : (Under		<u> </u>		
Building basi	c terminology of data	mining.		
Build compet	itive advantage throug	gh proactive analysis, predictive	modelling, and identifying new	
trends and be	haviours.			
CO3 : (Apply	7)			
Collect large	data sets of data.			
To produce a	quantitative analysis	report/memo with the necessary	information to make decisions.	
CO4: (Analys	se)			
Analyze large	e sets of data to gain u	seful business understanding		
Describing an	nd demonstrating basic	c data mining algorithms, method	ds, and tools	
CO5 : (Evalu	ate)			
Make use of 1	machine learning, patt	ern recognition, statistics, visual	ization, algorithm, database	
	• •	computing in data mining applica		
Learn more d	eveloping areas - web	mining, text mining, and ethical	aspects of data mining.	
	llabus: (per session pl	an)	1	
Module	Description		No of hours	
	Introduction, Related	1	15	
2	Data Mining Techniq	ues, Classification.	15	
3	Clustering, Association	on Rules	15	
٢	Total		45	
			No. of	
Module	Applied Component 4	(Basic Data Mining Concepts)	Hours/Credits	
			45/3	
1	Introduction, Related	Concepts.	15	

	Basic Data Mining Tasks; Data Mining Versus Knowledge	5
	Discovery in Databases, Data Mining Issues, Data Mining Metrics,	
	Social Implications of Data Mining, Data Mining from a Database	
	Perspective.	
	Related Concepts:	
	Database/OLTP Systems, Fuzzy Sets and Fuzzy Logic, Information	5
	Retrieval, Decision Support Systems, Dimensional Modeling, Data	
	Warehousing, OLAP, Web Search Engines, Statistics, Machine	
	Learning, Pattern Matching.	
2	Data Mining Techniques, Classification.	15
	Data Mining Techniques:	5
	A Statistical Perspective on Data Mining, Similarity Measures,	
	Decision Trees, Neural Networks, Genetic Algorithms.	
	Classification:	
	Introduction, Statistical-Based Algorithms, Distance-Based	5
	Algorithms, Decision Tree-Based Algorithms, Neural Network-	
	Based Algorithms, Rule-Based Algorithms, Combining Techniques.	
3	Clustering, Association Rules.	15
	Clustering:	4
	Similarity and Distance Measures, Hierarchical Algorithms,	
	Partitional Algorithms, Clustering Large Databases, Clustering with	
	Categorical Attribute.	
	Association Rules:	
	Large Itemsets, Basic Algorithms, Parallel and Distributed	6
	Algorithms, Comparing Approaches, Incremental Rules, Advanced	
	Association Rule Techniques, Measuring the Quality of Rules.	

1. Margaret H. Dunham, Data Mining –Introductory and Advanced topics, Pearson (2006).

- 1 Daniel T. Larose, Chantel D. Larose Discovering Knowledge in data; An Introduction to Data Mining-Wiley, (Wiley Series on Methods and Applications in Data Mining) (2014).
- 2. Charu C. Aggarwal, Data Mining-The Textbook-Springer (2015).
- 3. Max Bramer, Principles of Data Mining, Springer, Verlag London, (2016).

Program: B.S	c Applied Statist	ics & Data Analytics (Honours)	Semester : IV	V	
Course: Statistics Practical 4 (Based on Courses USMAAS401,			Course Code	Course Code:	
USMAAS402 and USMAAS403).			USMAAS4123		
Teaching Scheme Evaluation Scheme					
Practical		Continuous Assessment and	End Semester	Examination	
(Hours pe	er Credits	Evaluation (CAE)	(ESE) (Ma	rks-80%	
week)		(Marks - 20%)	in Question		
06	03	30	12		
Learning O	bjectives and Cour	rse Outcomes:			
As per	Courses USMAAS	5401, USMAAS402 AND USMAA	AS403		
Module			No. of Hours/Credits 90/3		
PRACTICAL	S				
Sr. No.	Based on Course	USMAAS401.			
1		iangular Distributions			
2	Exponential, G	amma and Beta Distributions.			
3	Normal Distribu	ation I			
4	Normal Distribu	ation II			
5	Fitting of Continuous Distributions				
6	Chi-square distribution I				
7	Chi-square distribution II				
8	t- Distribution				
9	F- Distribution				
10	Fishers z transformation.				
Sr. No.	Based on Cours	e USMAAS402.			
1	One Way ANOVA				
2	Two Way ANO				
3	•	ndomized Design.			
4	Randomized Bl				
5	Latin Square De	=			
6	Missing Plot Te				
7	Factorial Experi				
8	Factorial Experiments I				
9	Factorial Experi				
Sr. No.	Based on Cours	e USMAAS403.			
1	L.P.P. I - Formu	lation and Graphical Method.			
2	L.P.P II – Simp	lex Method.			
3	L.P.P III – Char	rnes Big M Method.			
4	L.P.P IV Dualit	y And Dual Simplex.			

5	Integer Programming.
6	Sensitivity.
7	Transportation Problems.
8	Transportation Problems.
9	Assignment Problems
10	Sequencing

Program	: B.Sc App	lied Statistics	And Data Analytics (Honours)		Semester : IV				
Course: N	Course Code:								
	USMAASP445								
	Teaching Scheme Evaluation Scheme								
Practical (Hours per week)		Credit	Continuous Assessment and Evaluation (CAE) (Marks – 20%) 10 Marks in Each Component	Examin (Ma in Questic	nd Semester hination (ESE) Marks-80% ion Paper)40 in Component)				
04 2			20	80					
Learning	g Objectives	and Course O	utcomes: As per Courses USMAA	AS404 ANE	O USMAAS405.				
Module	Module Mathematics Practical 4								
PRACTIO	PRACTICALS								
Sr. No.	Based on Course USMAAS404.								
1	Binary Numbers and Error Analysis.								
2	Bisection Method, Iteration Methods Based on first degree and Second Degree								
3	Secant Method, Regula-Falsi Method, Newton Raphson Method Muller Method,								
4	General Iteration Methods.								
5	Methods of Complex Roots; Polynomial equations/ approximations.								
6	Direct Methods, Error Analysis for Direct Methods, Iteration Methods.								
7	Jacobi, Givens and Householders Methods for symmetric matrices. Rutishauser Method								
8	Lagrange and Newton Interpolations.								
9	Finite Difference Operators.								
10	Interpolations: Hermite; Piecewise and Spline, Bivariate.								
11	Approximation, Least Square Approximation, Uniform Approximation, Rational Approximation.								
Sr. No.	Based on Course USMAAS405.								
1	Computing and applications of Eigen values and Eigen vectors.								
2	Applications to Linear economic models, stable age distribution in a population.								
3	Diagonalization								
4	Applications of Eigenvalues and Vectors								
5	Application to Differential equations, Diffusion process								
6	Linear Transformations								
7	Kernel and Range of a linear transformation								
8	Matrix of a linear transformation								
9	Change of Basis theorem.,								

10 Diag	gonalizabil	ity Similarit	y, Orthogonal Matrices.						
Program: B.Sc.	Program: B.Sc Applied Statistics And Data Analytics (Honours) Semester : IV								
Course: Advance	ced R Prac	tical (Based	on Courses USMAAS406).	Course Code: USMAASP46					
	Teaching	g Scheme	Evaluation Scheme						
Practical (Hours per week)		Credit	Continuous Assessment and Evaluation (CAE) (Marks – 20%) 10 Marks	Term End Examination (TEE) (Marks-80% 40 marks					
02		1	10	40					
Learning Obje	ctives and	Course Out	comes:						
As per Course	USMAA	S306.							
Module	Advanced R Practical				No of hours				
PRACTICALS									
Sr. No.	Based on Course USMAAS406								
1	Names and Values, Vectors, Subsetting								
2	Control Flow, Functions, Environments, Conditions.								
3	Functionals, Function Factories, Function Operators.								
4	OOP: S3								
5	OOP : S4								
6	OOP: RC								
7	OOP : R6								
8	Metaprogramming : Coding and Evaluation.								
9	Metaprogramming : Expressions								
10	Metaprogramming : Evaluation, Translating R code : Latex.								
11	Metaprogramming : Debugging, Measuring and improving performance.								