

Preamble

As Autonomy has been granted to the college, the syllabus has been restructured. Keeping in tune with the revised syllabi of F.Y.B.Sc., S.Y.B.Sc. and T.Y.B.Sc., the committee has taken utmost care to maintain the continuity in the flow of information of higher level at M.Sc. Hence some of the modules of the earlier syllabus of M.Sc. part I in semester I and II, have been upgraded with the new modules in order to make the learners aware about the details and recent developments in various branches of Botany (like Algae, Fungi, Bryophyta, Pteridophyta, Gymnosperms, Angiosperms taxonomy, Genetics, Molecular Biology, Anatomy, Physiology, Biotechnology) with an objective to raise the students awareness in interdisciplinary courses such as Biostatistics, Biophysics, Bioinformatics , Computational Biochemistry, Bioinstrumentation, Palynology, Embryology, Medicinal Botany.

Evaluation Pattern

The performance of the learner will be evaluated in two components. The first component will be a Continuous Assessment with a weightage of 25% of total marks per course. The second component will be a Semester end Examination with a weightage of 75% of the total marks per course. The allocation of marks for the Continuous Assessment and Semester end Examinations is as shown below:

a) Details of Continuous Assessment (CA)

25% of the total marks per course:

Continuous Assessment	Details	Marks
Component 1 (CA-1)	Presentation	15 marks
Component 2 (CA-2)	Test	10 marks

b) Details of Semester End Examination

75% of the total marks per course. Duration of examination will be two and half hours.

Question Number	Sub- part	Description	Marks	Total Marks
Q1 A)	i) to ii)	Answer any 1 of 2 questions	10marks	10 Marks
Q1 B)		Compulsory	5 marks	5 marks
Q 2 to Q 4		Same as above		
		TOTAL OF 4 QUESTIC	DNS	60 Marks
Q5)	i) to iv)	Short notes Answer 3 out of 4	05 marks	15 Marks
			TOTAL	15 Marks
			NET TOTAL	75 Marks

Sig	gnature		Sigr	nature		Si	gnature
HO	DD	A	Approved by V	ice –Principal	A	oproved by P	rincipal
	: M.Sc. I (2019-20)		11 2	L.	Semest		•
BOTANY	Y PAPER I CRYPT	OGAMS	[Γ	Course	Code: PSM	ABO101
	Teaching So	cheme			Evaluat	ion Scheme	
Lecture (Hours p week)	er (Hours per	Tutor ial (Hour s per week)	Credit	Continuo Assessment (Marks - 2	(CA)	Examina (Ma	ester End ations (SEE) arks- 75 tion Paper)
4	4 g Objectives:		8	25			75
practical t diseases. general. I on the bas of plant d Course C After com CO1: Le CO2: Uf al; CO3: Uf CO4: To	ersity, Algae, Applie tools for identifying It develops knowle dentifying them bas sic skills regarding n iseases. Dutcomes: npletion of the cours earn microbiological nderstand Xanthoph gae and their econor nderstand the life cy o identify diseased c	, classifyi edge of li ed on thein hethods of e, learner l culturing yta and B nic impor cles of th onditions	ng & studying fe cycle, econ r morphologic controlling pla s would be abl g techniques an acillariophyta tance e related fungi in plants and e	microbes, the lif omic importance al features. This ant diseases and u e to: d Isolate algae an among algae alou i and their system	e cycles e & outli course wi inderstan nd fungi ng with th natic posi	of algae and i ine of their c ill also help s d the integrat ne life-cycles tions	fungi, and plant classification in tudents to build ed management of related
		F	-)				
Modul e	Description						No of Hours
1	Algae		-				1hr
2	Applied Phycology						1hr
3	Fungi		1				1hr
4	Plant Pathology						1hr
	Total						
PRACTI	CALS						4hr

Unit	Торіс	No. of Hours/Credits
Module 1	 Algae Classification and General Characters: Distribution, Cell structure, pigments, reserve food, range of thallus, reproduction: asexual and sexual, Alternation of Generations, Economic Importance. Classification and General Characters of Xanthophyta: Distribution, Cell structure, pigments, reserve food, range of thallus, Reproduction: asexual and sexual, Alternation of Generations, Economic Importance. Classification and General Characters of Bacillariophyta: Distribution, Cell structure, pigments, reserve food, range of thallus, Reproduction: asexual and sexual, Alternation of Generations, Economic Importance. General account of the chloroplasts and chromatophores in different groups of algae. Domains & kingdom systems Outline classification of algae by F.E. Fritsch 1935; F.E. Round 1973 & Chapman & Chapman 1973 	Credit 1
Module 2	 Applied Phycology Culturing of algae and preservation Cultivation of algae with special reference to <i>Chlorella</i> and <i>Arthospira sps.</i>(Spirulina) Economic importance of algae with reference to: Food, Agriculture - Fodder, Biofuel, Biofertilizers, Industry: Agar agar, Medicine, Sewage disposal, Water pollution, Energy production. Contributions of Eminent Algologists in India: M. O. P. Iyengar and T. V. Desikachary. 	Credit 1
Module 3	Fungi	Credit 1

	 Classification of fungi upto orders, according to the system proposed by Alexopoulos (1962). General account of vegetative structure of unicellular and multicellular Mycelia, Septa, Hyphal 	
	 modifications in various groups of fungi General account of spore bearing organs and their arrangements in various groups of fungi. Spore release and dispersal – with special reference to Basidiomycotina, Deuteromycotina Life cycle of <i>Stemonitis, Phytophthora</i> and <i>Peziza</i>. Mycorrhiza: type, distribution and significance with reference to agriculture and forestry 	
Module 4	Plant Pathology	Credit 1
	 Integrated management of diseases Study of the following diseases with reference to occurrence, symptoms, causal organism, disease cycle, predisposing factors and control measures of the following diseases: a. Red rot of Sugarcane (<i>Colletotrichum falcatum</i>) b. Blast of Rice (<i>Pyricularia oryzae</i>) c. Wilt of Arhar/ Tur (<i>Fusarium oxysporum</i>) d. Green ear of Bajra (<i>Sclerospora graminicola</i>) e. Angular leaf spot of Cotton (<i>Xanthomonas axonopodis</i>) 	
	c. rangular lear spot of Cotton (Aunitomonus anonopouis)	

To develop scientific temper and interest by exposure through industrial visits and study/educational tours is recommended in each semester

PRACTICAL I

- Study of following type with reference to their systematic position, thallus and reproductive structures: *Scytonema*, *Lyngbya*, *Anabaena*, *Volvox*, *Scenedesmus*, *Ulva*, *Enteromorpha*, *Pithophora*, *Closterium*, *Nitella*, *Padina and Gracilaria*.
- Extraction of algal pigments and their separation by paper chromatography.
- Culturing of *Chlorella* and Spirulina algae
- Culturing of *Penicillium* by streak method

- Study of the following types with reference to their systematic position, thallus and reproductive structures: *Stemonitis, Saprolegnia, Phytophthora, Penicillium, Peziza, Polyporus, Daedalea, Fusarium and Trichoderma.*
- Study of the disease mentioned in the syllabus (theory) with reference to the symptoms, Causal organisms, Disease cycle and Control measures.

- 1. Dinabandhu Sahoo, Joseph Seckbach, (2015). The Algae World. Springer Publication
- 2. Smith, Gilbert M. (1955). Cryptogamic Botany Algae & Fungi Volume 1; 2nd edition; McGraw Hill Book Comp. Tokyo.
- 3. Gangulee, Das and Dutta (2011). College Botany Volume I and II. Central Education enterprises.
- 4. Peter Roberts, Shelley Evans (2014). The Book of Fungi: A Life-Size Guide to Six Hundred Species from around the world.
- 5. Mishra, S.R. (2005). Morphology of Fungi. Discovery Publishing House.
- 6. Sharma, O.P. (1989). A text book on Fungi. Tata McGraw-Hill Publications, New Delhi.
- 7. Michael J. Carlile, Sarah C. Watkinson, G. W. Gooday (2008). The Fungi. Elsevier Publications.
- 8. Kevin Kavanagh (2005). Fungi: Biology and Applications, John Wiley and sons Ltd.
- 9. Ingold, C.T. & Hudson H.J. (1993). The Biology of Fungi, Chapman & Hall.
- 10. Mukerji, K.G., Manoharachary, C. (2010). Taxonomy and Ecology of Indian Fungi, I.K International.
- 11. Deacon, J. W. (2006). Fungal biology. (4th Ed.) Blackwell publishing.

	n: M.Sc. I (2019-20)				Semest	er: I	
Course:	BOTANY PAPER I	I SPERM	IATOPHYTA	Ι	Course	Code: PSMA	ABO102
	Teaching So	cheme			Evaluat	ion Scheme	
Lectur (Hours) week)	per (Hours per	Tutor ial (Hour s per week)	Credit	Continuou Assessment ((Marks - 2	CA)	Examina (Ma	ster End tions (SEE) rks- 75 ion Paper)
4	4		8	25			75
This p morph	g Objectives: baper deals with stud hology, biology of 1	living and	l fossil Gymr	nosperms, econom	ic impo	ortance & out	line of Bentha
Hooke	er's classification of	angiospe	rm families a	nd Nomenclature.	The les	ssons also giv	e students han
compe	etence for studying f	amilies in	nature & iden	tifying them based	l on thei	r morphologic	cal features.
CO3: C CO4: U cl	o relate the morpholo orelate the character inderstand the econo assification.	istics of v mic impo	arious parts of rtance of the p	f the plant to the ha	abit of th		
Modul e	Description						No of Hours
1	Gymnosperms I						1hr
2	Gymnosperms II						1hr
3	Angiosperms I						1hr
4	Angiosperms II						1hr
	Total						

Unit	Торіс	No. of Hours/Credits
Module 1	 Gymnosperms I Classification of Gymnosperms upto orders according to the system proposed by C. J. Chamberlain. Characters of Gymnosperms which resemble and differ from Pteridophytes, Angiosperms. General characters; affinities and interrelationships of Cycadofilicales, Bennettitales and Cycadales. Life cycle of <i>Zamia</i> and <i>Araucaria</i> 	Credit 1
Module 2	 Unit II: Gymnosperms- II Classification of Coniferophyta upto orders. General Characters of Cordaitales, Ginkgoales, Coniferales & Gnetales. Life cycle of <i>Ginkgo</i>. Life cycle of <i>Podocarpus</i> 	Credit 1
Module 3	 III Angiosperms I Study of following families with reference to its systematic position, distribution, floral formula, floral diagram, affinities, morphological peculiarities, economic important plants and their uses. Menispermaceae, Passifloraceae, Portulacaceae, Sterculiaceae, Meliaceae, Celastraceae, Sapindaceae, Crassulaceae, Lythraceae, Gentianaceae, Boraginaceae, Chenopodiaceae, Cyperaceae 	Credit 1
Module 4	 Angiosperms II International Code of Nomenclature for Algae, Fungi and Plants (I.C.N.) Principles and Rules and reccomendation. Principles for assessment of relationships, delimitation of taxa & attribution of rank: a) Criteria b) Guidelines c) Practical consideration d) Use of Categories Systems of classification Introduction to Artificial, Natural and Phylogenetic System of classification Introduction to A. P. G. systems. 	Credit 1

• Evolution, variation & speciation, Biosynthetic categories, biotypes & ecotypes.	

To develop scientific temper and interest by exposure through industrial visits and study/educational tours is recommended in each semester

PRACTICAL II

Gymnosperms: A study of following types

- *Cycadeoidea* (Fossil)
- Williamsonia (Fossil)
- Araucaria
- Cupressus
- Podocarpus
- Zamia
- *Ginkgo* (from slides/photomicrographs if no material available)

Angiosperms:

- A study of the angiosperm families mentioned in theory with reference to their morphological peculiarities and economic importance of its members.
- Identification of genus and species with the help of flora (In addition to the above mentioned families, all families studied in undergraduate classes are included)

Suggested Readings

GYMNOSPERM

- 1 Gymnosperms Structure And Evolution by Chamberlain C.J.
- 2 A textbook of Gymnosperms by Vyas, Purohit and Garg. Ramesh book depot, Jaipur.
- 3 Gymnosperms, by P.C.. Vashishta. 1983. VAS g. Publisher, New Dehli.
- 4 Charles Joseph Chamberlain and John Merle Coulter, 1910, Morphology of Gymnosperms. K. R. Sporne. The morphology of gymnosperms

PLANT TAXONOMY

- 1. A.K. Mondal (2005). Advanced plant taxonomy, New Central book agency (p) Ltd, London.
- 2. A.N. Henry and M. Chandrabose, 1980, An aid to ICBN, Today tomorrow printers and publishers
- 3. Cole A. J. 1969, Numerical Taxonomy, Academic Press, London.
- 4. Cronquist A. 1981, An integrated system of classification of flowering

plants, Columbia University Press, N.Y.

- 5. Davis, P. Hand V.H. Heywood, 1963, Principles of angiosperm taxonomy, Oliver and Boyd, Edinburgh.
- 6. Gurucharan Singh, 1999, Plant Systematics, Oxford and IBH publishers.
- 7. Heywood, V.H. 1967, Plant Taxonomy, Edward Arnold publishers, London.
- 8. Jeffery, C. 1973. Biological Nomenclature, Edward Arnold publishers, London.
- 9. Lawrence George H.M. 1967, Taxonomy of Vascular plants, Oxford and IBH publishers.
- Naik V.N. 1999. Taxonomy of Angiosperms, Tata-MacGraw Hill Publishers, Co. Ltd.
- 11. Sharma O.P. 1988. Plant Taxonomy.
- 12. Samuel Jones 1987. Plant systematics, Tata-MacGraw Hill Publishers, Co. Ltd.
- 13. Sivarajan V.V. 1991, Introduction to principles of plant taxonomy, Oxford and IBH publishers, New Delhi.
- 14. Sneath R.H.A. & R.R. Sokal, 1973. Numerical Taxonomy, W.H. Freeman and Company, Sanfransisco.
- 15. Vasudevan Nair R. 1997. Plant systematics, Oxford and IBH publishers.
 - 16.V.V. Sivarajan, 1991. Introduction to Principles of plant Taxonomy, Oxford and IBH publishers.

~	n: M.Sc. I (2019-20)				Semest	
Course:	BOTANY PAPER	III PLAN	Γ PHYSIOLO	GY	Course	Code: PSMABO103
	Teaching S	cheme			Evaluat	ion Scheme
Lectur (Hours week	per (Hours per	Tutor ial (Hour s per week)	Credit	Continuor Assessment ((Marks - 2	(CA)	Semester End Examinations (SEE) (Marks- 75 in Question Paper)
4	4 g Objectives:		8	25		75
After co	Outcomes: mpletion of the cours The students will lear					
C	bhotosynthetic mecha f plant hormones.	nism in p	lants, events c	f seed and fruit de	evelopme	nd abiotic stresses, nt and various physiologica opogation of commercially
CO2: I	bhotosynthetic mecha of plant hormones. Learn the basic techni mportant plants.	nism in p	lants, events c lant physiolog	f seed and fruit de	evelopme	nt and various physiologica
CO2: I	botosynthetic mecha of plant hormones. Learn the basic techn	nism in p	lants, events c lant physiolog	f seed and fruit de	evelopme	nt and various physiologica opogation of commercially
CO2: I in Outline Modul	bhotosynthetic mecha of plant hormones. Learn the basic techni mportant plants.	nism in p	lants, events c lant physiolog	f seed and fruit de	evelopme	nt and various physiologica
CO2: I in Outline	bhotosynthetic mecha of plant hormones. Learn the basic techni mportant plants. of Syllabus: (per se	nism in p	lants, events c lant physiolog	f seed and fruit de	evelopme	nt and various physiologica opogation of commercially
CO2: I in Outline Modul e	bhotosynthetic mecha of plant hormones. Learn the basic techni mportant plants. of Syllabus: (per se Description	nism in p	lants, events c lant physiolog	f seed and fruit de	evelopme	nt and various physiologica opogation of commercially No of Hours
CO2: I in Outline Modul e 1	ohotosynthetic mecha of plant hormones. Learn the basic techni mportant plants. of Syllabus: (per se Description Photosynthesis I	nism in p	lants, events c lant physiolog n)	f seed and fruit de	evelopme	nt and various physiologica opogation of commercially No of Hours 1hr
CO2: I in Outline Modul e 1 2	hotosynthetic mecha of plant hormones. Learn the basic technic mportant plants. of Syllabus: (per se Description Photosynthesis I Photosynthesis II	nism in p iques of P ssion plan	lants, events c lant physiolog n)	f seed and fruit de	evelopme	nt and various physiologica opogation of commercially No of Hours 1hr 1hr
CO2: I in Outline Modul e 1 2 3	hotosynthetic mecha of plant hormones. Learn the basic technis mportant plants. of Syllabus: (per se Description Photosynthesis I Photosynthesis II Proteins	nism in p iques of P ssion plan	lants, events c lant physiolog n)	f seed and fruit de	evelopme	nt and various physiologica opogation of commercially No of Hours 1hr 1hr 1hr

Unit	Торіс	No. of Hours/Credits
Module 1	 Photosynthesis I (Eukaryotes) ATP synthesis in chloroplasts (chemiosmotic hypothesis) Regulation of C₃, C₄ and CAM pathways of photosynthesis: C₃ plants: Role of light, regulation of RUBISCO C₄ plants: Role of light, regulation of PEPcase, transport of metabolites, carbonic anhydrase, NADP-MDH and PPDK Regulation of CAM through transport of metabolites. Pentose Phosphate Pathway and its importance, effect of glucose-6-phosphate dehydrogenase deficiency. 	Credit 1
Module 2	 Photosynthesis II (Prokaryotes) Photosynthesis of prokaryotes: Classification of photosynthetic bacteria, Pigment systems, CO₂ fixation in bacteria and cyanobacteria, Structure and mechanism of light harvesting complex, Reductive TCA cycle. 	Credit 1
Module 3	Proteins Primary, secondary, tertiary and quaternary structural features and their analysis – Theoretical and experimental; protein folding – biophysical and cellular aspects, Role of chaperons in protein folding.	Credit 1
Module 4	Plant Growth Regulators	Credit 1

Auxins, Gibberellins, Cytokinins, Ethylene, Abscisic acid, Brassinosteroids and Jasmonic acid; Biosynthesis, storage, breakdown, transport and their physiological responses.	

To develop scientific temper and interest by exposure through industrial visits and study/educational tours is recommended in each semester

PRACTICAL I

Major experiments

- Enzyme kinetics: Determination of Km and Vmax of the enzyme amylase (purified amylase).
- Extraction of cellulase from a suitable fungal culture and study of enzyme activity by DNSA method.
- Immobilisation of yeast cells and study of invertase activity.
- Quantitative study of diurnal fluctuation in Titratable Acid Number (TAN) in a CAM plant.
- Extraction and estimation of GOT and GPT from suitable plant material.
- Estimation of the total nitrogen content of a plant using Kjeldahl's method.

Minor experiment

- Separation of organic acids by paper chromatography.
- Separation of sugars by paper chromatography.
- A study of the enzyme polyphenol oxidase, from potato peels.
- Solvent extraction of chlorophyll a/b, xanthophylls and study of absorption pattern.
- Determine the Chl a/Chl b ratio in C₃ & C₄ plants.

- 1. Plant physiology by Lincoln Taiz and Eduardo Zeiger
- 2. Introduction to plant biochemistry by T W Goodwin and E I Mercer
- **3**. Fundamentals of biochemistry by Donald Voet and Judith G Voe
- 4. Biochemistry by Zubay
- **5.** Advanced Plant Physiology Noggle& Fritz Prantice Hall of India.
- 6. Introductory Plant Physiology Malcom Wilkins, Pitman Publication Ltd, 1984.
- 7. Plant Physiology Pandey and Sinha, Vikas Publishing House, 1987.
- 8. Outlines of Biochemistry Conn & Stumpf, John Willey and Co., 1987.
- 9. Plant Physiology, Biochemistry and Molecular Biology Dennis and Turnip, longman
- **10.** Scientific and Technical, 1990.
- **11.** Plant Physiology Taiz and Zeiger, Sinauer association Inc.

	n: M.Sc. I (2019-20)				Semest	er: 1
BOTAN	Y PAPER IV CYTO			LAR	Course	e Code: PSMABO104
	BIOLOGY AND B	IOTECHN	NOLOGY			
	Teaching Se	cheme			Evaluat	tion Scheme
Lectur (Hours) week	per (Hours per	Tutor ial (Hour s per week)	Credit	Contin Assessmer (Marks	nt (CA)	Semester End Examinations (SEE) (Marks- 75 in Question Paper)
4	4		8	25		75
and its fu	unctions.	ut the here	editary basis o	f life, prokaryo	tic and euk	aryotic genome organization
After con CO1: C a CO2: A CO3: U	nd cytogenetic aspec Acquire the knowledg Understand, what for	e structure ets of crop ge of impo ns the bas	and functions evolution. ortance of chro sis of evolution	of choromoso mosomal varia	tions in stru	
After con CO1: (a CO2: A CO3: U Outline Modul	mpletion of the cours Get an insight into the nd cytogenetic aspect Acquire the knowledg	e structure ets of crop ge of impo ns the bas	and functions evolution. ortance of chro sis of evolution	of choromoso mosomal varia	tions in stru	osome mapping, polyploidy acture and number. No of Hours
After con CO1: (a CO2: A CO3: U Outline Modul e	mpletion of the cours Get an insight into the nd cytogenetic aspec Acquire the knowledg Understand, what form of Syllabus: (per sec Description	e structure ets of crop ge of impo ns the bas	and functions evolution. ortance of chro sis of evolution	of choromoso mosomal varia	tions in stru	No of Hours
After con CO1: (a CO2: A CO3: U Outline Modul e 1	mpletion of the cours Get an insight into the nd cytogenetic aspect Acquire the knowledg Understand, what form of Syllabus: (per sector) Description	e structure ets of crop ge of impo ns the bas ssion plan	and functions evolution. ortance of chro sis of evolution	of choromoso mosomal varia	tions in stru	No of Hours
After con CO1: (a CO2: A CO3: U Outline Modul e 1 2	mpletion of the cours Get an insight into the nd cytogenetic aspect Acquire the knowledg Understand, what form of Syllabus: (per second Description Cytogenetics Molecular Biology	e structure ets of crop ge of impo ns the bas ssion plan	and functions evolution. ortance of chro sis of evolution n)	of choromoso mosomal varia	tions in stru	No of Hours 1 hr
After con CO1: (a CO2: A CO3: U Outline Modul e 1 2 3	mpletion of the cours Get an insight into the nd cytogenetic aspect Acquire the knowledg Understand, what form of Syllabus: (per second Description Cytogenetics Molecular Biology Recombinant DNA	e structure ets of crop ge of impo ns the bas ssion plan	e and functions evolution. ortance of chro sis of evolution n)	of choromoso mosomal varia	tions in stru	No of Hours I hr
After con CO1: C a CO2: A CO3: U Outline Modul e 1 2	mpletion of the cours Get an insight into the nd cytogenetic aspect Acquire the knowledg Understand, what form of Syllabus: (per second Description Cytogenetics Molecular Biology	e structure ets of crop ge of impo ns the bas ssion plan	e and functions evolution. ortance of chro sis of evolution n)	of choromoso mosomal varia	tions in stru	No of Hours 1 hr

Unit	Торіс	No. of Hours/Credits
Module 1	 Cytogenetics Cell division and cell cycle: Steps in cell cycle and control of cell cycle. Check points during cell cycle-G₁ to S, progression of S phase, G₂ to M phase, Anaphase check points and components involved as regulators of check points, role of cyclins and CDKs, synthesis and degradation of cyclins, structural features of CDKs and cyclins, activation and inactivation of cyclin dependent kinases; role of E2Fs, and DP proteins, P53, different types of Cyclin dependent CDKs, CDC25, CAKs, Wee1 proteins, nim-proteins, SCFs, Anaphase Promoting Complexes APC (cyclosomes), licensing factors, replication origin and replication initiation complexes. Centrosome activation- structure, duplication of mitotic apparatus, binding of tractile fibers to kinetochore complexes, molecular motors involved in movement of chromosomes to equatorial plate and in anaphase movement; cytokinesis by cleavage and phragmoplast formation- different gene products and structures involved and the mechanisms of cytokinesis. 	Credit 1
Module 2	 Molecular Biology Microbial Genetics: Molecular basis of transformation, transduction, Conjugation; fine structure of the gene, T4 Phage, complementation analysis, deletion mapping, cis-trans tests. Tetrad analysis in <i>Neurospora:</i> Linkage detection (2 genes and centromere) 	Credit 1
Module 3	Recombinant DNA Technology	Credit 1

 General information on SV-40, Vaccinia, Baculovirus & retroviral vectors. Use of YAC or YEp of yeast (<i>Saccharomyces cervisiae</i>) as effective cloning vectors because of their high copy numbers in production of HBsAg vaccine. Use of BAC and its advantages. Strategies to create Transgenic plants with herbicide resistance: Following strategies to be studied in detail with reference to herbicide Glyphosate resistance: a) Overexpression of the target protein by using a strong promoter. b) Improved plant detoxification resulting in a more and faster conversion of toxic herbicide to non toxic or less toxic compound. c) Detoxification of herbicide by using a foreign gene. d) Mutation of target protein Methods of modifying the Diazotrophs (N₂ fixing bacteria) by Gene alterations in <i>Rhizobium</i> sp. to a) Improve nitrogen fixing efficiency and bacteria host plant interaction. b) Induce symbiotic relationship with nonleguminous plants such as wheat, rice and corn c) Transfer of gene for nitrogen fixation from <i>Rhizobium</i> sps. to other bacteria such as <i>Agrobacterium tumefaciens</i>. 	
 Applications of Recombinant DNA technology Resistance to biotic stress: a) Transgenic plants with insect resistance: Resistance genes from microbes: Gene from <i>Bacillus thuringenesis</i>, Cholesterol oxidase of <i>Streptomyces</i> culture filtrate, Isopentenyl transferase gene from <i>Agrobacterium tumefaciens</i> Resistance genes from higher plants: Genes for Proteinase inhibitors: eg. Cowpea trypsin inhibitor gene (CpTi), Genes for alpha amylase inhibitors. b) Transgenic plants with viral resistance: Employing virus encoded genes or virus coat proteins; e.g. 	
 Transgenic tobacco plants expressing tobacco mosaic virus coat protein gene were developed which express high level of resistance to TMV Improvement of nutritional content and Quality: 	

 vegetables for e.g. (<i>Dioscorephyllum</i> and lettuce b) Increase and cl species (increase converting unsatu acids). c) Increase in start Transgenics for c shelf life-Tomato. 	reetness and flavor in Monellin gene from A <i>cumminsii</i>)- introduction ange in the quality oils in medium chain fatty rated fatty acid to satu h content (potato). Played fruit ripening an nts: Plantibodies,	frican plant n in tomato in <i>Brassica</i> acids and arated fatty
life of cut flows engineering of of flower pigmentati • Genetic engineer plants.	n floriculture: Increase rs - (Carnation flower rchids, Genetic manij	s), Genetic pulation of Sterility in
To develop scientific temper and in		

To develop scientific temper and interest by exposure through industrial visits and study/educational tours is recommended in each semester

PRACTICAL I

- 1. Preparation of cytological stains, fixatives and pretreatment agents.
- 2. Squash preparation from pre-treated root tips (colchicines/ Paradichlorobenzene/ Aesculin.
- 3. Squash preparation from mutagen treated root tips for study of aberrations.
- 4. Smear preparation from any suitable plant material.
- 5. Problems based on:
 - a. Restriction map analysis and construction of restriction maps,
 - b. Tetrad analysis in Neurospora two genes and centromere.
 - c. Deletion mapping in Bacteriophage.

- 1. Daneil J.H and Lodish D. (1995). Molecular Cell Biology. Baltimore Scientific American Book
- 2. De Robertis and De Robertis. Cell and Molecular Biology

- 3. Eduardo Diego Patricio De Robertis, EMF De Robertis (1988), Cell and molecular biology, International Ed. Inst. Med. Ltd
- 4. Hyde David R, Genetics and Molecular Biology, Mcgraw Hill
- 5. Lewin Benjamin. Genes, Oxford University Press.
- 6. Lewis R. Human Genetics, Concepts and applications
- 7. Molecular Biology W.H Freeman G Co. 47
- 8. Russell PJ (2001) iGenetics: A molecular Approach Pearson
- 9. Simmons M.J. Principles of Genetics, John Wiley and Sons.
- 10. Watson James D. Molecular Biology of the Gene, Pearson
- 11. Elliot and Elliot. (2001). Biochemistry and Molecular Biology. Oxford University Press.
- 12. Gerald Karp. (1996). Cell and Molecular Biology. John Wiley and Sons. Inc
- 13.Glick B. and J. Pasternak, , (2003) Molecular Biotechnology: Principles and Applications of Recombinant DNA , 3rd Edition, American Society of Microbiology
- 14. Lodish, H., Ber, A., Zipuoskry, L.S., Matsudaira, P., Bahimore, D and Damell J. (2001) Molecular Biology W.H Freeman G Co. 47
- 15. Pollard J.P. and W.C. Earnshaw. (2002). Cell Biology, Sunders

Shri Vile Parle Kelavani Mandal's IITHIBAI COLLEGE OF ARTS, CHAUHAN INSTITUTE OF SCIENCE & AMRUTBE JIVANLAL COLLEGE OF COMMERCE AND ECONOMICS (AUTONOMOUS) NAAC Reaccredited 'A' grade, CGPA: 3.57 (February 2016),

Granted under RUSA, FIST-DST & -Star College Scheme of DBT, Government of India, Best College (2016-17), University of Mumbai

Affiliated to the **UNIVERSITY OF MUMBAI**

Program: M.Sc. I

Course: plant diversity cryptogams II

PLANT DIVERSITY: SPERMATOPHYTA II

PLANT PHYSIOLOGY & ENVIRONMENTAL BOTANY

MEDICINAL BOTANY & DIETETICS Semester II

Choice Based Credit System (CBCS) with effect from the Academic year 2020-2021

Preamble

As Autonomy has been granted to the college, the syllabus has been restructured. Keeping in tune with the revised syllabi of F.Y.B.Sc., S.Y.B.Sc. and T.Y.B.Sc., the committee has taken utmost care to maintain the continuity in the flow of information of higher level at M.Sc. Hence some of the modules of the earlier syllabus of M.Sc. part I in semester I and II, have been upgraded with the new modules in order to make the learners aware about the details and recent developments in various branches of Botany (like Algae, Fungi, Bryophyta, Pteridophyta, Gymnosperms, Angiosperms taxonomy, Genetics, Molecular Biology, Anatomy, Physiology, Biotechnology) with an objective to raise the students awareness in interdisciplinary courses such as Biostatistics, Biophysics, Bioinformatics , Computational Biochemistry, Bioinstrumentation, Palynology, Embryology, Medicinal Botany.

Evaluation Pattern

The performance of the learner will be evaluated in two components. The first component will be a Continuous Assessment with a weightage of 25% of total marks per course. The second component will be a Semester end Examination with a weightage of 75% of the total marks per course. The allocation of marks for the Continuous Assessment and Semester end Examinations is as shown below:

c) Details of Continuous Assessment (CA)

25% of the total marks per course:

Continuous Assessment	Details	Marks
Component 1 (CA-1)	Presentation	15 marks
Component 2 (CA-2)	Test	10 marks

d) Details of Semester End Examination 75% of the total marks per source. Durati

75% of the total marks per course. Duration of examination will be two and half hours.

Question Number	Sub- part	Description	Marks	Total Marks
Q1 A)	i) to ii)	Answer any 1 of 2 questions	10marks	10 Marks
Q1 B)		Compulsory	5 marks	5 marks
Q 2 to Q 4		Same as above		
		TOTAL OF 4 QUESTIO	NS	60 Marks
Q5)	i) to iv)	Short notes -Answer 3 out of 4	05 marks	15 Marks
			TOTAL	15 Marks
			NET TOTAL	75 Marks

Signature HOD

Signature Approved by Vice –Principal Signature Approved by Principal

Program: M	.Sc. I (2019-20)			Semest	er: II
PLANT DIV	ERSITY : CRY	PTOGAN	AS II	Course	e Code: PSMABO201
	Teaching So	cheme		Evaluat	tion Scheme
Lecture (Hours per week)	Practical (Hours per week)	Tutor ial (Hour s per week)	Credit	Continuous Assessment (CA) (Marks - 25)	Semester End Examinations (SEE) (Marks- 75 in Question Paper)
4	4		8	25	75

Learning Objectives:

This paper includes the students understand and conceptualize the classification and life cycle of members belonging to bryophytes, and Pteridophytes. The course also offers to make students learn and understand certain applied aspects of both bryophytes & pteridophytes viz. their evolution, diversity, distribution, their ecology, economic importance and their use as pollution indicators. Besides, the course also caters to making the learners understand their economic importance. Practically, the learners will be studying these members from preserved and fresh material. One crucial aspect that adds to comprehensive learning about these groups of plants is through regular field visits, which reinforces classroom-learning objectives about the variety of plant groups.

Course Outcomes:

After completion of the course, learners would be able to:

CO1: Identify the members belonging to bryophytes and pteridophytes in their natural habitat and their evolutionary trends.

CO2: Experience the natural environment where these plant groups grow and comprehend their life cycle and their role in ecology.

CO3: Understand the applied aspects related to plant diversity, distribution and their economic importance CO4: Understand the economic and ecological of bryophytes and pteridophytes.

Outline of Syllabus: (per session plan)

Modul e	Description	No of Hours
1	Bryophyta I	1hr
2	Bryophyta II	1hr
3	Pteridophyta I	1hr
4	Pteridophyta II	1hr
	Total	
PRACTI	CALS	4hr

Unit	Торіс	No. of Hours/Credits
Module 1	 Bryophyta I Classification of Bryophyta, upto orders, according to the system proposed by G. M. Smith. Alternation of generation in Bryophyta. Contribution of Shiv Ram Kashyap and S. C. Srivastava in Bryology. Type study of <i>Plagiochasma</i> and <i>Pogonatum</i> 	Credit 1
Module 2	 Bryophyta II Origin and evolution of Bryophyta with reference to habitat and form. Evolution of the Sporophyte in Bryophyta Study of gametophytes in Bryophyta. Bryophytes as bioindicators. Alternation of generations in Bryophytes. 	Credit 1
Module 3	 Pteridophyta I Classification of Pteridophyta, upto orders, according to the system proposed by G.M.Smith. Classification & general characters of Pterophyta Heterospory and seed habit Life cycle of <i>Psilotum</i>, <i>Pteris</i> and <i>Salvinia</i> 	Credit 1
Module 4	 Pteridophyta II The geological time scale and a study of fossil Pteridophytes <i>Horneophyton, Cladoxylon,</i> <i>Sphenophyllum, Coenopteris</i>) Cultivation and maintenance of ornamental Ferns. Abnormalities in the life cycle - Apogamy and Apospory Ethnomedicinal uses of Pteridophytes 	Credit 1

To develop scientific temper and interest by exposure through industrial visits and study/educational tours is recommended in each semester

PRACTICAL I

- Study of vegetative and reproductive structures in *Plagiochasma, Fimbraria*, and *Pogonatum*.
- Study of vegetative and reproductive structures in : *Isoetes*, *Ophioglossum*, *Pteris*, *Angiopteris*, *Lygodium* and *Salvinia*
- Study of fossils :Horneophyton, Cladoxylon, Sphenophyllum, Coenopteris
- Ethnomedicinally important Pteridophytes

- College Botany Vol I and II by Gangulee Das and Dutta Central Education enterprises.
- Cryptogamic Botany Vol I and II by G M Smith, Mcg raw Hill
- Vashishtha B R, Vashi Sinha AK and Anil Kumar *Botany for Degree Students Part I Algae.* S ChandPubl.
- Vashishtha B R, Vashi Sinha AK and Anil Kumar *Botany for Degree Students Part II - Fungi* S ChandPubl.
- Vashishtha B R, Vashi Sinha AK and Anil Kumar *Botany for Degree Students Part III Bryophyta* S ChandPubl.
- Rashid A (1999) An introduction to Pteridophyta. Vikas Publishing house Pvt.Ltd. New Delhi.
- Sharma OP (1990) textbook of Pteridophyta. Mac Millan India Ltd. Delhi.
- Smith GM (1955) Cryptogamic Botany Vol. II Mc Grew Hill.
- Sporne KR (1986) The morphology of Pteridophytes. Hutchinson University Press. London.
- Stewart WN and Rothwell GW (2005) Paleobotany and the Evolution of plants, 2nd Edn. Cambridge University Press.
- Sundara Rajan S. (1999) Introduction to Pteridophyta. New Age International Publishers, New Delhi.
- Surange KR (1966) Indian fossil Pteridophytes. Council of Scientific and Industrial research.
- Parihar NS (1976) Biology and morphology of the Pteridophytes. Central Book Depot.

	M.Sc. I (2019-20)				mester: II	
Course: P	LANT DIVERSIT	Y: SPERN	ЛАТОРНҮТА	A II Co	ourse Code: PSM	IABO202
	Teaching S	cheme		Ev	aluation Scheme	2
Lecture (Hours pe week)		Tutor ial (Hour s per week)	Credit	Continuous Assessment (CA (Marks - 25)	A) Examin (M	ester End ations (SEE) arks- 75 stion Paper)
4	4 Objectives:		8	25		75
CO1: Un CO2: Un bic	derstand the micro logy of fruit devel f Syllabus: (per se	ural eleme and mega opment an	nts of plants i sporogenesis d maturation.	neristems, organogen ; sexual incompatibil	•	sperm and
Module	Description					No of Hours
1	Anatomy I					1hr
2	Anatomy II					1hr
3	Developmental E	Botany				1hr
	Palynology					
4						1hr
4	Total					1hr

Unit	Торіс	No. of Hours/Credits
Module 1	 Anatomy I Meristems: Definition type of meristems, apical cell theory, histogen theory and Tunica corpus theory Morphogenesis and organogenesis in plants: Organization of shoot and root apical meristems; shoot and root development, leaf development and phyllotaxy; transition of flowering, floral meristems and floral development in <i>Arabidopsis</i> and <i>Antirrhinum</i> 	Credit 1
Module 2	Anatomy II • Study of Tissue system: • Sensory and tactile tissue system: Tactile sense organs, gravitational and optical sense organs. • Secretory Tissues: Introduction, Glands, Digestive glands, Nectaries, Resin ducts and oils ducts, Laticiferous ducts. • Wood Anatomy: Coniferous and Angiosperm wood • Parenchyma: Storied and non-storied wood parenchyma • Distribution of vessels • Structure of rays	Credit 1
Module 3	 Developmental Botany Male gametophyte: Pollen development and gene expression male sterility sperm dimorphism and hybrid seed production; pollen tube growth and guidance. Female gametophyte; Types of embryo sacs; structure of embryo sac cells. Fertilization: heterospermy, differential behavior of 	Credit 1

	 male gametes, discharge and movement of sperms; syngamy and triple fusion, post-fertilization metabolic & structural changes in embryo-sac. Seed development and fruit growth; endosperm development during Early Maturation and Desiccation stages; embryogenesis, ultrastructure and nucellar cytology; cell lineage during late embryo development; storage proteins of endosperm and embryo; apomixis; embryo culture; dynamics of fruit growth; biochemistry and molecular biology of fruit maturation. 	
Module 4	 Palynology Special relationships of pollen grain in pollen tetrads. Pollen Chemistry: Introduction, Chemical constituents of pollen-Major metabolites (Carbohydrates, Mineral content, Callose, Organic acids, Amino acids, Pigments, Vitamins, Hormones and steroids), Chemistry of pollen wall, Pollen wall proteins. Pollen wall morphogenesis, ultrastructure & primexin formation. Utilization of pollen: Pollen as health food, Pollen as medicine, Pollen allergens for diagnosis and therapy. 	Credit 1

To develop scientific temper and interest by exposure through industrial visits and study/educational tours is recommended in each semester

PRACTICAL I

- Study of wood elements in *Annona, Michelia, Sterculia* and *Thuja & Araucaria* using the maceration technique.
- Study of the following leaves with respect to leaf surface characters (wax, cuticle, epidermis, stomata, epidermal outgrowth): *Pistia, Ficus, Avicennia* and *Peperomia*.
- Study of vessels, parenchyma: Axial & Ray Parenchyma Apotracheal: Terminal, Diffuse, Banded, Reticulate; Paratracheal: Vasicentric, Aliform, Confluent, Abaxial.
- Ray Parenchyma & Rays: Homogenous & Heterogenous
- Wood Fibres from dicotyledonous wood by temporary preparation.
- (Topic 3 for identification only)
- Mounting of Glands- salt glands of halophytes- Avicennia, Ipomoea biloba, Sesuvium/Suaeda
- Nectaries- Euphorbiaceae & Combretaceae (at least 3 examples from each family)
- Resin ducts- Pinus

- Oils ducts- Citrus, Eucalyptus, Murraya
- Laticiferous ducts Apocynaceae & Asclepiadaceae.
- Digestive glands- From permanent slides/ photomicrograph
- Microtomy- Processing of material, Block making & staining- 5 slides- (only for submission).
- Camera lucida sketches of parenchyma/ rays.(only for submission)
- A study of Microsporogenesis, Megasorogenesis, ovules & types of embryo sacs with the help of permanent sides/photomicrographs. (Topic 7 for identification only)
- *In vitro* germination of pollen grains, effect of temperature on pollen viability and short-*term* storage.
- Detection of amino-acids, sugars and lipids by paper/ Thin layer chromatography from pollen grains.
- Study of the morphology of the pollen (using Chitale's and acetolysis method) from the families; studied in sem I & II

- 1. KashinathBhattacharya etc; 2011, A text Book of Palynology(Basic and Applied)New Central Book Agency (P)Ltd,London.
- 2. Nair.P.K.K. 1970, Pollen Morphology of Angiosperms, Scholar Publ.House, Lucknow.
- 3. Shivanna K.R.,2003, Pollen Biology and Biotechnology-Special Indian Edition, Oxford and IBH Publ.CoPvt.Ltd,New Delhi.
- 4. Shivanna.K.R.&Johri.B.M, 1985,The Angiosperm Pollen:Structure and Function,Wiley Eastern Ltd, New delhi.
- 5. Tilak.S.T,1982,Aerobiology,VaijayanthiPrakashan,Aurangabad,India.
- 6. Plant Anatomy by Chandurkar P J, , Plant Anatomy Oxford and IBH publication Co. New Delhi 1971
- 7. Plant Anatomy, By P Pandey, S Chand and Co. Ltd, New Delhi 1978
- 8. An introduction to Modern Biology By Greulach V A and Adams J E Plant-, Toppen Co. Ltd, Tokyo,
- 9. An Introduction to Plant Anatomy, By Eams and Mc Daniel,McGraw –Hill Book Co. Ltd and Kogakusha Co, Tokyo, Japan
- 10. Practical Plant Anatomy, By Adriance S Foster D Van Nostrand Co. INC, Newyork
- 11. Plant Anatomy, By Esau, Wiley Toppan Co. California, USA
- 12. Plant Anatomy, By Pijush Roy New Central Book Agency Ltd, Kolkata
- 13. Plant Anatomy and Embryology, By Pandey S N and Ajanta Chadha, Vikas Publishing House, Pvt, Ltd, New Delhi

	I.Sc. I (2019-20))			Semest	er: II
	ANT PHYSIOLO DTANY	OGY & EN	NVIRONMEN	NTAL	Course	Code: PSMABO203
	Teaching S	cheme			Evaluat	ion Scheme
Lecture (Hours per week)	Practical (Hours per week)	Tutor ial (Hour s per week)	Credit	Continuo Assessment (Marks - 2	(CA)	Semester End Examinations (SEE) (Marks- 75 in Question Paper)
<mark>4</mark>	<mark>4</mark>		<mark>8</mark>	25		75
	, Environment, B	0 0 P	,	0,		
CO1: Desc biorh CO2: Unde	etion of the cours wribe the physiolo nythms; stress ph	ogical phen ysiology o pt of envir	omena of pla f plants. conment, biog			s, will know the overview o cology.
After compl CO1: Desc biorl CO2: Unde	etion of the course wribe the physiolo nythms; stress pherstand the conce	ogical phen ysiology o pt of envir	omena of pla f plants. conment, biog	nts in terms of me		
After compl CO1: Desc biorh CO2: Unde Outline of S	etion of the cours ribe the physiolo nythms; stress ph erstand the conce Syllabus: (per se	ogical phen ysiology o pt of envir ssion plan	omena of pla f plants. conment, biog	nts in terms of me		cology.
After compl CO1: Desc biorh CO2: Unde Outline of S Module	etion of the course wibe the physiolo hythms; stress ph erstand the conce byllabus: (per se Description	ogical phen ysiology o pt of envir ssion plan	omena of pla f plants. conment, biog	nts in terms of me		cology. No of Hours
After compl CO1: Desc biorh CO2: Unde Outline of S Module 1	etion of the course ribe the physiolo hythms; stress pherstand the conce Syllabus: (per se Description Seed Physiolog	ogical phen ysiology o ppt of envir ssion plan gy	omena of pla f plants. conment, biog	nts in terms of me		cology. No of Hours 1hr
After compl CO1: Desc biorh CO2: Unde Outline of S Module 1 2	etion of the course ribe the physiolo sythms; stress pherstand the conce Syllabus: (per se Description Seed Physiolog Stress Physiolog	ogical phen ysiology o pt of envir ssion plan gy ogy ent	omena of pla f plants. conment, biog	nts in terms of me		cology. No of Hours 1hr 1hr
After compl CO1: Desc biorh CO2: Unde Outline of S Module 1 2 3	etion of the course ribe the physiolo hythms; stress pherstand the conce Syllabus: (per se Description Seed Physiolog Stress Physiolog The Environme	ogical phen ysiology o pt of envir ssion plan gy ogy ent	omena of pla f plants. conment, biog	nts in terms of me		cology. No of Hours 1hr 1hr 1hr 1hr

Unit	Торіс	No. of Hours/Credits
Module 1	 Seed physiology: Physiology and Biochemistry of seed germination, Mobilization of food reserves, Germination and growth factors. Seed dormancy, Control and release of seed dormancy. Factors in control for the long term storage of seeds, seed proteins. 	Credit 1
Module 2	 Stress Physiology: Biotic and abiotic stress, Response of plants to Biotic (pathogenic and insects) stress, Adaptations to eliminate and tolerate the infection, Hypersensitive reaction. Response of plants to abiotic stress - Drought stress, Heat stress - Heat shock proteins, Chilling, and freezing, Salinity stress Signaling pathways activated during stress 	Credit 1
Module 3	 The Environment, Biogeography and Population Ecology: Environment: Components, Major components of physical environment, biotic and abiotic interactions, Biogeography: Major terrestrial biomes, Theory of island bio-geography, Bio-geographical zones of India. Population Ecology: Characteristics of a population; population growth curves; population regulation; life history strategies (r and K selection). 	Credit 1
Module 4	 Climate Change: Global warming, carbon credits, Kyoto mechanism. Factors responsible for climate change, Climate change in relation to the changes in patterns of temperature, precipitation and sea level rise, Impacts of Climate Change on various sectors – 	Credit 1

 Agriculture, Forestry and Ecosystem. The Montreal Protocol, Paris Agreement, UNFCCC, IPCC. Adaptation Strategy/ Mitigation Measures, Blue carbon initiative. 	

To develop scientific temper and interest by exposure through industrial visits and study/educational tours is recommended in each semester

PRACTICAL I

Practical exercises are planned for better understanding of the state of environment, rather than 5-hour units. Field exercises are expected to be completed during excursion and field diaries maintained for submission during tests. Other practical work can be carried out in the laboratory with help of plant and soil samples collect from the field.

Major experiments

- Breaking of seed dormancy by Physical and Chemical methods
- Assessing seed viability by TTC method
- Determination of Nygard index of algae in a water body.
- Determination of dust load on lives of roadside plant.
- Comparison of two population of a species collected from two areas.
- Determination of primary production of an area by harvest method.
- Determination of primary production of an area by chlorophyll method.
- Determination of primary aquatic production by harvest method.
- Determination of mechanical composition of soil by international pipette method.

Minor experiments

- Effect of water and salinity stress on chlorophyll content of leaves.
- Effect of water and salinity stress on Proline content of leaves.
- Determination of Stomatal Index of leaves
- Determination of epidermal architecture of leaves.
- Determination of LAI of different types of trees.
- Assessment of pollution in ambient air, on the basis of injured leaf area.

Field exercises

- Assessment of erosion status of land along a 'stream' on a slope or on flat land.
- Assessment of status of waste land, on the basis of its appearance and visible plant growth.
- 3Assessment of degradation of a forest on the basis of its canopy cover and height, strata and species diversity.

- 1. Gupta, P.K. (2011). Cell-biology, Genetics, Evolution and Ecology.
- 2. Odum, E .P. and Barrett, G .W. (2005). Fundamentals of Ecology by Thompson Asia Pvt Ltd. Singapore Vol 87
- 3. Chapman, J.L. and Reiss M.J. (2005). Ecology Principles and Applications, Cambridge University Press London.
- 4. Dash, M.C. (1994). Fundamentals of Ecology, Tata McGraw Hill, New Delhi.
- 5. Introduction to Biomes Book by Susan L. Woodward Vol 8 (Pb 2009)
- 6. Santra SC. (2011). Environmental Science, New Central book agency
- 7. Subrahmanyam, N.S.;Sambamurty, A.V.S.S.; (2000) Ecology; 1st edition; New Delhi : Narosa Publishing House
- 8. Fundamentals of Ecology. By E.P. Odum. 1996. Natraj Publishing, Dehradun.
- 9. Plants and Environment- A Text Book of Plant Ecology (3rd edition). By Daubenmire R.F. 1974. John Wiley & Sons. New York.
- 10. Ecology with Special Reference to Animals and Man. By Kendeigh S.C. 1980. Prentice Hall of India Pvt. Ltd., New Delhi.
- Modern Concepts of Ecology (3rd edition). By Kumar H.D. 1996. Vikas Publishing House Pvt., Ltd. Delhi. 11.Kumar.H.D. 1997. General Ecology. Vikas Publishing Pvt. Ltd., Delhi.
- 12. Concepts of Ecology. By Kermondy F.J. 1996. Prentice Hall of India Pvt. Ltd., New Delhi.
- 13. Ecology and Field Biology (5th edition). By Smith L.R. 1996. Harper Collins College Publishers, USA.
- 14. Plant Ecology. By Weaver. J.E. and Clements. S.E. 1966. Tata McGraw Publishing Co. Ltd. Bombay.
- 15. Elements of Ecology. (4th edition). By Smith L.R. and Mith T.M. 1998. An imprint of Addison Wesley, Longman ink., California.
- 16. Plant Physiology by S. N. Pandey and B. K. Sinha (2014)., Vikas Publishing House Pvt. Ltd., India. Buchanan B.B, Gruissem W. and Jones R.L (2000). Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists Maryland, USA.
- 17. Plant physiology by Salisbury F.B and Ross C.W (1992). (Fourth Edition) Wadsworth Publishing Company, California,USA.
- 18. Introduction to Plant Physiology by William G. Hopkins (1995), Published by John Wiley and Sons, Inc.
- 19. Plant Physiology (3rd edition), by Lincoln Taiz and Eduardo Zeiger (2003). Published by Panima Publishing Corporation R. G. S. Bidwell (revised edn.)-
- 20. Plant Physiology by Verma S.K. and Verma Mohit (2007). A.T.B of Plant Physiology, Biochemistry and Biotechnology, S.Chand Publications.

Program: M.Sc. I (2019-20)				Semester: II	
Course: MEDICINAL BOTANY & DIETETICS			IETETICS	Course Code: PSMABO204	
Teaching Scheme				Evaluation Scheme	
Lecture (Hours per week)	Practical (Hours per week)	Tutor ial (Hour s per week)	Credit	Continuous Assessment (CA) (Marks - 25)	Semester End Examinations (SEE) (Marks- 75 in Question Paper)
<mark>4</mark>	<mark>4</mark>		<mark>8</mark>	25	75
understanding crude drugs,	fers to make stu g of Indian and to focus and	Ayurvedic depth in t	c pharmacope he food scien	eia, to train students in the discipline, to introdu	any and Dietetics To develop ne field of quality control of ce the future perspective of
The course of understanding crude drugs,	fers to make stu g of Indian and to focus and	Ayurvedic depth in t	c pharmacope he food scien	eia, to train students in th	ne field of quality control of ce the future perspective of
The course of understanding crude drugs, nutraceuticals Course Outc	fers to make stug of Indian and to focus and and to acquain omes:	Ayurvedic depth in t t the stude	c pharmacope he food scien nts with the co	eia, to train students in the discipline, to introdu oncept of plant food as me	ne field of quality control of ce the future perspective of
The course of understanding crude drugs, nutraceuticals Course Outc After completion	fers to make stug of Indian and to focus and and to acquain omes: tion of the cours	Ayurvedic depth in t t the studen se, learners	c pharmacope he food scien nts with the co s would be able	eia, to train students in the discipline, to introdu oncept of plant food as me	ne field of quality control of ce the future perspective of edicine
The course of understanding crude drugs, nutraceuticals Course Outc After complet The students	fers to make stug of Indian and to focus and and to acquain omes: tion of the cours are expected	Ayurvedid depth in t t the studen se, learners to be able	c pharmacope he food scien nts with the co s would be able to get famili	eia, to train students in the ace discipline, to introdu oncept of plant food as me e to: iar with therapeutic uses	ne field of quality control of ce the future perspective of edicine
The course of understanding crude drugs, nutraceuticals Course Outc After comple The students pharmacopeia	fers to make stug of Indian and to focus and and to acquain omes: tion of the cours are expected	Ayurvedid depth in t t the studen se, learners to be able d Ayurved	c pharmacope he food scien nts with the co s would be able to get famili ic and learn he	eia, to train students in the ace discipline, to introdu- oncept of plant food as me e to: iar with therapeutic uses ow plant food is used as n	ne field of quality control of ce the future perspective of edicine
The course of understanding crude drugs, nutraceuticals Course Outc After complet The students pharmacopeia CO1: Famil	fers to make stug of Indian and to focus and and to acquain omes: tion of the cours are expected a both Indian an	Ayurvedid depth in t t the studen se, learners to be able d Ayurved apeutic use	c pharmacope he food scien nts with the co would be able to get famili ic and learn he s of several pla	eia, to train students in the acce discipline, to introdu- oncept of plant food as me e to: iar with therapeutic uses ow plant food is used as mants	ne field of quality control of ce the future perspective of edicine

Modul	Description	No of Hours
e		
1	Medicinal Botany I	1hr
2	Medicinal Botany II	1hr
3	Dietetics I	1hr
4	Dietetics II	1hr
	Total	4hr
PRACTI	CALS	4hr

Unit	Торіс	No. of Hours/Credits
Module 1	 Medicinal Botany I Monograph of drugs with respect to Biological source, Geographical distribution, macro and microscopic characters, chemical constituents and therapeutic uses of the following drugs: Root: Withania somnifera (Ashwagandha) Rhizome: Zingiber officinale (Ginger). Stem bark: Cinnamom zeylanicum (Cinnamom) and Holarrhena antidysenterica (Kurchi). Leaf: Azadirachta indica (Neem). Fruit: Foeniculum vulgare (Fennel) Seed: Plantago ovata (Isabgol) 	Credit 1
Module 2	 Medicinal Botany II Introduction to Pharmacopeia: Indian pharmacopeia and Ayurvedic pharmacopeia Quality control of crude drugs: Morphological examination – Exomorphic characters Microscopical evaluation – Anatomical characters Preliminary phytochemical tests. Development of standardization parameters – Moisture content, Ash values, Solvent extraction value, bitterness value, foaming index, swelling index and heavy metal. 	Credit 1
Module 3	 Dietetics I Nutraceuticals: Definition and Introduction, classification (Dietary supplements, functional foods, Medicinal food, Pharmaceuticals) Role of plant nutraceuticals in health benefits (onion, garlic, tomato, carrot, beet, turmeric). Current trends and future prospective of nutraceuticals. 	Credit 1

Module 4	Dietetics II	Credit 1
	Plant Food as medicine:	
	• Plant food in the treatment of diseases – arthritis,	
	constipation, diarrhoea, diabetes, , hypertension,	
	 cancer, jaundice, memory and piles Concept of Antioxidants, their significance, Plants as a source of antioxidants. 	

To develop scientific temper and interest by exposure through industrial visits and study/educational tours is recommended in each semester

PRACTICAL I

Medicinal Botany –I

A study of the macroscopic and microscopic characters and identification of active ingredients of drugs mentioned in the syllabus for theory by means of chemical tests.

- Root: Withania somnifera (Ashwagandha)
- Rhizome: Zingiber officinale (Ginger)
- Stem bark: *Cinnamom zeylanicum* (Cinnamom) and
 - Holarrhena antidysenterica (Kurchi)
- Leaf: Azadirachta indica (Neem)
- Fruit: Foeniculum vulgare (Fennel)
- Seed: *Plantago ovata* (Isabgol)

Medicinal Botany -II

- Determination of Moisture content of Ash values, Solvent extraction value of the given sample.
- Determination of foaming index of the given sample.
- Determination of swelling index of the given sample.

NUTRACEUTICALS

- Estimation of lycopene by TLC
- Amino acid profile of a plant/plant product
- Identification of plants Nutraceuticals for health benefits (As per theory topics)

Note:

- 1. A minimum of five field excursions (with at least one beyond the limits of Maharashtra) for habitat studies are compulsory. Field work of not less than 8 hours duration equivalent to 1 period per week for a batch of 15 students.
- 2. A candidate will be allowed to appear for the practical examinations only if he /she submits a certified journals of MSc Botany and field report.
- 3. Compulsory visit to Western Ghats for observation of plants (at least for three days).
- 4. Compulsory excursion for observation of plants (local, atleast 2 in each term). Same Field diary to be continued from Sem I and II & maintained for all four semesters.

- 1. Mukherjee P.K, (2002). Quality Control of Herbal Drugs-An approach to evaluation of Botanicals: Business Horizons Pharmaceutical Publishers, New Delhi.
- 2. Khandelwal KR. (2004). Practical Pharmacognosy. Nirali prakshan, 2004.
- 3. Anonymous, (1996) Pharmacopoeia of India, Ministry of health and family welfare, Govt. of India.
- 4. Trease & Evans (1996) Pharmacognosy. Sunders company ltd.
- 5. Wallis T.E. (1985) Textbook of Pharmacognosy. CBS PRESS.
- 6. Jain S.K. (1987). A manual of Ethnobotany. Sci. Publ. Jodhapur.
- 7. Jain S.K. & Mundal V. (1999). A hand book of Ethnobotany. Bishen Singh Mahendra Pal Singh, Dehradun.
- 8. Jain S.K. (1986). Ethnobotany Interdisciplinary Sci. Rev 11 (3) 285-292.
- 9. Jain A.K. (20160. I ndian Ethnobotany: Emerging Trends. Scientific Publishers
- 10. European Pharmacopoeia. 9th Edition. (2017). 3 Volume Set.
- 11. Evans W. C. (2009) Trease and Evans' Pharmacognosy. Elsevier Health Sciences.
- 12. Farooqi A. A. and Sreeramu B.S. (2004) Cultivation of Medicinal and Aromatic Crops. Revised Edition. Universities Press (India) Pvt. Ltd.
- 13. Harborne A. J. (1998) Phytochemical Methods A Guide to Modern Techniques of Plant Analysis. Third Edition. Chapman and Hall.
- 14. Indian Pharmacopoeia 7th Edition (2014). 4 Volume Set.
- 15. Jain S. M. and Saxena P. K. (2009) Protocols for in vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants. Humana Press.
- 16. Rai M. and Carpinella M. C. (2006) Naturally Occurring Bioactive Compounds. Elsevier B. V.
- Raman N. (2006) Phytochemical Techniques. New India Publishing Agency, New Delhi, India. Ramavat K. G. and Goyal Shaily (2009) Comprehensive Biotechnology. 1st Edition. S. Chand Publishing.
- Schirmer, R.E., (2000), Modern Methods of Pharmaceutical Analysis, Vol. 1, 2. CRC Press, Boca Raton, Florida.
- 19. Wagner H. and Bladt S. (1996) Plant Drug Analysis A Thin Layer Chromatography Atlas. 2nd Edition. Springer.
- 20. Smith, P. M. (1976) The Chemotaxonomy of Plants. Edward Arnold, UK