

Shri Vile Parle Kelavani Mandal's MITHIBAI COLLEGE OF ARTS, CHAUHAN INSTITUTE OF SCIENCE & AMRUTBEN JIVANLAL COLLEGE OF COMMERCE AND ECONOMICS (AUTONOMOUS)

NAAC Reaccredited 'A' grade, CGPA: 3.57 (February 2016), Granted under RUSA, FIST-DST & -Star College Scheme of DBT, Government of India Best College (2016-17), University of Mumbai

Affiliated to the **UNIVERSITY OF MUMBAI**

Program: Master of Science (By paper)

Course: Physics

Semester: I and II

Choice Based Credit System (CBCS) with effect from the Academic year 2020-21

PROGRAMME SPECIFIC OUTCOMES (PSO'S)

On completion of the M.Sc Physics, the learners should be enriched with knowledge and be able to-

- **PSO1:** Physics knowledge: Understand current development in various dolmens of modern Physics like Nuclear Physics, Electrodynamics, Atomic and Molecular Physics, Classical Mechanics, Quantum Mechanics, Statistical Mechanics, Mathematical Physics, Solid state Physics, Advanced Electronics, Solid state devices, Experimental techniques and electronic communication technology.
- **PSO2: Practical Skills and Analytical Abilities:** Develop analytical abilities and acquire practical skill in handling measuring equipment required to carry out experiments in different areas of Physics, verify complex Physics problems through experimentation and use them to develop science and technology.
- **PSO3: Motivation and life-long learning**: Acquire skills like collaborative work, communication and independent learning required for lifelong learning to overcome challenges ahead.
- **PSO4:** Research: Clear competitive examination like SET, NET, JRF, PET and JEST required for pursue research at different research institutes and Universities. Get trained for a career in basic sciences and contribute in educational institutes, industries and emerging branches of science
- **PSO5:** Ethics: Demonstrate professional behaviour such as (i) being objective, unbiased and truthful in all aspects of work and avoiding unethical, irrational behaviour such as fabricating, falsifying or misrepresenting data or committing plagiarism; (ii)the ability to identify the potential ethical issues in work-related situations; (iii) appreciation of intellectual property, environmental and sustainability issues; and (iv) promoting safe learning and working environment.

PREAMBLE

Physics is a scientific knowledge of natural phenomenon at macro as well as micro level and proved as key for development of modern science and technology. The courses offered in this M.Sc Physics program gives adequate knowledge of Physics and necessary practical skills to students who may go on to work in different areas like Nuclear Physics, Material science, advanced electronics, Astrophysics, Theoretical Physics and Instrumentations.

This M. Sc. in Physics Program to be taught from the academic year 2020-21 onwards consists of total 16 theory courses, total 6 practical lab courses and 2 projects spread over four semesters. Each theory course will be of 4 (four) credits, each practical lab course will be of 4 (four) credits and each project will be of 4 (four) credits. A project can be on theoretical physics, experimental physics, applied physics, development physics, computational physics or industrial product development. A student earns 24credits per semester and total 96 credits in four semesters.

SYLLABUS MSC, PHYSICS, SEMESTER-I

Program	Program: Master of Science (Physics)				Semester : I	
Course: 1	Mathematic	al methods			Course Co	de: PSMAPH101
	Teach	ing Scheme		E	valuation So	cheme
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	ContinuousTAssessment andExaEvaluation (CAE)(Marks -)		Term End Examinations (TEE) (Marks)
4	-	-	4	25	5	75
Pre-requi Basic kno	site: wledge of M	athematical Ph	ysics, Fourier s	eries and its tra	ansform.	
Learning	Objectives:					
1. To ma 2. To 3. To pro	 To teach differential equations, power series solutions, theory of complex variable analysis, matrices, tensors, polynomials, special functions, Laplace transform and its applications. To use mathematical tools to develop analytical abilities towards real world problems. To enrich knowledge through problem solving, hands on activities, study visits and projects. 					
Learning	outcomes:					
Course O	utcomes:					
After com	pletion of the	e course, learn	ers would be ab	le to:		
COI: De	escribe and re	cognize differ	ent types of con	iplex equation	s, Matrices, t	ensors, power
sei	tes solutions	and integral ti	ansform.	1 T 1	1 T	1
pro	scuss and exj oblems, Matr	ices, tensors, c	lifferential equa	tion, Frobeniu	or and Laurer s methods, sp	nt series, residues becial function
an	d integral tra	nsform	Ĩ	·		
CO3: So	lve problems	on all units b	ased on CR equa	ation, infinite s	series probler	ns, residues
pr	oblems, Matr	ices, tensors, d	lifferential equa	tion, and integ	ral transform	
CO4: In	vestigate the	Analytics func	tions, improper	real integral, o	lefinite integr	ral, eigen vectors,
dia	igonalization	of matrix, add	lition and subtra	ction of tensor	rs, power seri	es solution,
gro	een's function	n and integral	transform.	Harmonia fu	nation Daram	ators of matrices
an	US: Evaluate the Complex integral, CR equations, Harmonic function, Parameters of matrices and tensors, Differential equation, Special functions, green's function and Laplace and					
Fo	Fourier transform.					
CO6: De	rive solution	s to theorem, o	lerive formulas	in topic covere	ed from all fo	ur units.
Outline o	t Syllabus: (per session pl	an)			
Unit	Description					Duration
1 Co	Complex Variables					15

2	Matrices and Tensor Analysis.	15
3	Second Order Differential Equation, Power Series Solution, and Green's Function.	15
4	Integral Transform.	15
	Total	60
DETA	ILED SYLLABUS	
Unit	Description	No. of lectures
1	Complex Variables, Limits, Continuity, Derivatives, Cauchy-Riemann Equations, Analytic functions, Harmonic functions, Elementary functions: Exponential and Trigonometric, Taylor and Laurent series, Residues, Residue theorem, Principal part of the functions, Residues at poles, zeroes and poles of order m, Contour Integrals, Evaluation of improper real integrals, improper integral involving Sines and Cosines, Definite integrals involving sine and cosine functions.	15
2	Matrices, Eigenvalues and Eigen vectors, orthogonal, unitary and hermitian matrices, Diagonalization of Matrices, Applications to Physics problems. Introduction to Tensor Analysis, Addition and Subtraction of Tensors, summation convention, Contraction, Direct Product, Levi-Civita Symbol.	15
3	General treatment of second order linear differential equations with non- constant coefficients, Power series solutions, Frobenius method, Legendre, Hermite and Laguerre polynomials, Bessel equations, Nonhomogeneous equation – Green's function, Sturm-Liouville theory.	15
4	Integral transforms: three dimensional fourier transforms and its applications to PDEs (Green function of Poisson's PDE), convolution theorem, Parseval's relation, Laplace transforms, Laplace transform of derivatives, Inverse Laplace transform and Convolution theorem, use of Laplace's transform in solving differential equations.	15
Refer	ence Books:	
1. 2. 3. 4. Additi	S. D. Joglekar, Mathematical Physics: The Basics, Universities Press 2005 S. D. Joglekar, Mathematical Physics: Advanced Topics, CRC Press 2007 M.L. Boas, Mathematical methods in the Physical Sciences, Wiley India 2006 G. Arfken and H. J. Weber: Mathematical Methods for Physicists, Academic F ional Reference Books: A.K. Ghatak, I.C. Goyal and S.J. Chua, Mathematical Physics, McMillan	Press 2005
2. 3. 4. 5. 6. 7. 8.	 A.C. Bajpai, L.R. Mustoe and D. Walker, Advanced Engineering Mathematics, E. Butkov, Mathematical Methods, Addison-Wesley J. Mathews and R.L. Walker, Mathematical Methods of physics P. Dennery and A. Krzywicki, Mathematics for physicists T. Das and S.K. Sharma, Mathematical methods in Classical and Quantum Met R. V. Churchill and J.W. Brown, Complex variables and applications, V Ed. Met A W.Joshi, Matrices and Tensors in Physics, Wiley India 	John Wiley echanics c Graw. Hill

Program: Master of Science (Physics)					Semester : I		
Course	Course : Classical Mechanics				Course Code: PSMAPH102		
Teaching Scheme			Evaluation Scheme				
Lecture (Hours per week	Practical (Hours) per week)	Tutorial (Hours per week)	Credit	Conti Assessn Evaluati (Marks -	nuous nent and on (CAE))	Term End Examinations (TEE) (Marks- in Question Paper)	
4	-	-	4	2	25	75	
Pre-requ	uisite: Basic	Knowledge of	Newtonian Me	chanics.			
Learnin 1. T ct 2. T	 Learning Objectives: 1. To teach theory of Lagrangian and Hamiltonian formulations, variational Principle, central force field problems, conservation laws, theory of small oscillations, canonical transformations, and angular momentum and Poission bracket relations. 2. To teach how to apply theories for solving complex mechanics problems 						
 Course Outcomes: After completion of the course, learners would be able to: CO1: Describe theory of Lagrangian and Hamiltonian formulations, variational Principle, central force field problems, conservation laws, theory of small oscillations, canonical transformations, and angular momentum and Poission bracket relations. CO2: Explain the two-body central force system, Legendre transformation, cyclic coordinates and conservation theorems, the sympletic approach to canonical transformation. CO3: Application of Lagrangian formulism, Hamiltonian formalism. CO4: Compare Newtonian, Lagrangian and Hamiltonian formalism. CO5: Evaluate energy, orbits for system in central force. Evaluate frequencies of free vibration and normal coordinates for small oscillations systems. Evaluate canonical transformation for given sytems. CO6: Derive Lagrange equation of motion from Dalembert's principle, from Hamiltonian principle, derive Hamiltonian equation of motions. Derivation of Hamilton's equations 							
Outline	of Syllabus:	(per session p	olan)				
Unit			Description			Duration	
1 V	Variational Principal and Lagrangian Formulation 15					15	
2 M	Motion under central force field 15						

3 Mechanics of small oscillations and Hamiltonian equation of motion.	15
4 Canonical transformations and Poisson brackets.	15
Total	60
DETAILED SYLLABUS	
1 (Review of Mechanics of a particle, Mechanics of a system of particles, Frames of references, rotating frames, Centrifugal and Coriolis force, Constraints) D'Alembert's principle and Lagrange's equations, Velocity- dependent potentials and the dissipation function, Simple applications of the Lagrangian formulation. Hamilton's principle, Calculus of variations, Derivation of Lagrange's equations from Hamilton's principle, Lagrange Multipliers and constraint exterimization problems, Extension of Hamilton's principle to no holonomic systems, Advantages of a variational principle formulation	15
2 Conservation theorems and symmetry properties, Energy Function and the conservation of energy. The Two-Body Central Force Problem: Reduction to the equivalent one body problem, The equations of motion and first integrals, The equivalent one-dimensional problem and classification of orbits, The virial theorem, The differential equation for the orbit and integrable power-law potentials, The Kepler problem: Inverse square law of force, The motion in time in the Kepler problem, Scattering in a central force field, Transformation of the scattering problem to laboratory coordinates.	15
 3 Small Oscillations: Formulation of the problem, the eigenvalue equation and the principal axis transformation, Frequencies of free vibration and normal coordinates, Forced and damped oscillations, Resonance and beats. Legendre transformations and the Hamilton equations of motion, Cyclic coordinates and conservation theorems, Derivation of Hamilton's equations from a variational principle. 	15
4 Canonical Transformations, Examples of canonical transformations, The symplectic approach to canonical transformations, Poisson brackets and other canonical invariants, Equations of motion, infinitesimal canonical transformations and conservation theorems in the Poisson bracket formulation, The angular momentum Poisson bracket relations.	15
Reference Books: Main Reference:	

Classical Mechanics, H. Goldstein, Poole and Safko, 3rd Edition, Narosa Publication (2001)

Additional References:

- 1. Classical Mechanics, N. C. Rana and P. S. Joag. Tata McGraw Hill Publication.
- 2. Classical Mechanics, S. N. Biswas, Allied Publishers (Calcutta).
- 3. Classical Mechanics, V. B. Bhatia, Narosa Publishing (1997).
- 4. Mechanics, Landau and Lifshitz, Butterworth, Heinemann.
- 5. The Action Principle in Physics, R. V. Kamat, New Age Intnl. (1995).
- 6. Classical Mechanics, Vol I and II, E. A. Deslougue, John Wiley (1982).
- 7. Theory and Problems of Lagrangian Dynamics, Schaum Series, McGraw (1967).
- 8. Classical Mechanics of Particles and Rigid Bodies, K. C. Gupta, Wiley Eastern (2001)
- 9. Classical Mechanics, Gupta Kumar and Sharma, Pragati Prakashan.

Program:	Master of	Science (Phy		Semester : I		
Course: Quantum Mechanics-I					Course Co	de: PSMAPH103
Teaching Scheme				Ev	valuation So	cheme
Lecture (Hours per week)	Practica l (Hours per week)	Tutorial (Hours per week)	Credit	Continuous Assessment and Evaluation (CAE) (Marks)		Term End Examinations (TEE) (Marks- in Question Paper)
4	-	_	4	25	5	75

Pre-requisite: Basic Knowledge of Quantum Mechanics and linear algebra.

Learning Objectives:

To familiarize students with the theoretical framework of non-relativistic quantum mechanics and its applications to simple problems.

Course Outcomes:

After completion of the course, learners would be able to:

- **CO1:** Describe fundamentals of Schrodinger's equations, operators, Eigen value, Eigen function, Harmonic oscillator, potential well, Hydrogen atom, Linear vector space, Hilbert space, Hermitian operators, matrix mechanics, , angular momentum and Pauli spin matrices.
- **CO2:** Explain Schrodinger, Heisenberg and interaction picture. Discuss time development of expectation values, conservation theorem and parity. Discuss general properties of one dimensional Schrodinger equations.
- CO3: Solve Schrodinger equation for 1-D, 2-D and 3-D system. Apply spherical harmonics to find Eigen functions of L^2 and L_z Apply addition of angular momentum to find Clebsch Gordan coefficients.

CO4: Distinguish LS and JJ coupling, Angular momentum matrices, Pauli spin matrices

CO5: Evaluate eigen values and eigen states for quantum mechanical systems.

CO6: Derive expression for reflection and transmission coefficient for quantum mechanical systems. Derive expression of energy for hydrogen atom.

Outlin	ne of Syllabus: (per session plan)	
Unit	Description	Duration
1	Review of concepts, Linear Vector Spaces and operators.	15
2	Schrodinger equation solutions: one dimensional problems, Gaussian wave packet, Fourier transform.	15
3	Schrodinger equation solutions: Three dimensional problems.	15
4	Quantum theory of Angular momentum and rotations	15
	Total	60
DETA	AILED SYLLABUS	
Unit	Description	Duration
1	Review of concepts: Postulates of quantum mechanics, observables and operators, measurements, state function and expectation values, the time-dependent Schrodinger equation, time development of state functions, solution to the initial value problem. The Superposition principle, commutator relations, their connection to the uncertainty principle, complete set of commuting observables. Time development of expectation values, conservation theorems and parity. Formalism: Linear Vector Spaces and operators, Dirac notation, Hilbert space, Hermitian operators and their properties, Matrix mechanics: Basis and representations, unitary transformations, the energy representation. Schrodinger, Heisenberg and interaction picture.	15
2	Wave packet: Gaussian wave packet, Fourier transform.Schrodinger equation solutions: one dimensional problems:General properties of one dimensional Schrodinger equation, Particle in a box, Harmonic oscillator by raising and lowering operators and Frobenius method, unbound states, one dimensional barrier problems, finite potential well.	15
3	Schrodinger equation solutions: Three dimensional problems: Orbital angular momentum operators in cartesian and spherical polar coordinates, commutation and uncertainty relations, spherical harmonics, two	15

	particle problem- coordinates relative to centre of mass, radial equation for a	
	spherically symmetric central potential, hydrogen atom, eigenvalues and	
	radial eigenfunctions, degeneracy, probability distribution.	
4	Angular Momentum: Ladder operators, eigenvalues and Eigen functions of L^2 and L_z using spherical harmonics, angular momentum and rotations. Total angular momentum J; LS coupling; eigenvalues of J^2 and J_z . Addition of angular momentum, coupled and uncoupled representation of eigenfunctions, Clebsch Gordan coefficient for $j_1 = j_2 = \frac{1}{2}$ and $j_1 = 1$ and $j_2 = \frac{1}{2}$. Angular momentum matrices, Pauli spin matrices, spin Eigen functions, free particle wave function including spin, addition of two spins.	15
Refere	ence Books:	
Main	references:	
1.	Richard Liboff, Introductory Quantum Mechanics, 4th edition, Pearson.	
2.	D J Griffiths, Introduction to Quantum Mechanics 4th edition	
3.	A Ghatak and S Lokanathan, Quantum Mechanics: Theory and Applications, 5	oth edition.
4.	N Zettili, Quantum Mechanics: Concepts and Applications, 2nd edition, Wiley	
Additi	ional references:	
1.	W Greiner, Quantum Mechanics: An introduction, Springer, 2004	
2.	R Shankar, Principles of Quantum Mechanics, Springer, 1994	
3.	P.M. Mathews and K. Venkatesan, A Textbook of Quantum Mechanics, Tata M (1977).	IcGraw Hill
4.	J.J. Sakurai Modern Quantum Mechanics, Addison-Wesley (1994).	

Program: Master of Science (Physics)					Semester: I	
Course:	Solid State Physics				Course Code:	PSMAPH104
Teaching Scheme			Evaluation Scheme			
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Co Asse Evalı	ontinuous essment and 1ation (CAE) (Marks)	Term End Examination s (TEE) (Marks)
4		-	4		25	75
Pre-requisite: Basic Knowledge of Material Science.						
Learning Objectives:						
To fam	iliarise the s	students with	fundamentals of	crystal s	structures of mate	erials, concept of

Brillouin zones, reciprocal lattice, and theory of diffractions and scattering of EM waves by crystals, Lattice vibrations and thermal properties, concept of phonon wave, theory diamagnetic and paramagnetic materials, superconductivity, and theory of ferromagnetism, magnetic ordering.

~								
Cours	e Outcomes:							
After	completion of the course, learners would be able to:							
C01:	Describe fundamentals of crystal structures of materials, magnetism and							
c02.	Discuss concept of Brillouin zones and reginrocal lattice. Discuss the Lattice	Vibration						
02.	and thermal properties of matter. Explain the magnetic ordering of materials	VIDIATION						
CO3:	CO3: Solve the problems covered in the topics.							
CO4:	CO4: Investigate the various magnetic properties of materials. Investigate the Lattice							
	Vibration and thermal properties of matter							
CO5	: Asses the application of magnetism. Summarize the BCS theory.							
CO6	: Derive the London equation and Josephson's equation. Derive the theory of r	nagnetism.						
	Derive the dispersive relation for various crystal lattice.							
Outlin	ie of Syllabus: (per session plan)							
Unit	Description	Duration						
eme		Durunon						
1	Diffraction of Waves by Crystals, Reciprocal Lattice, Lattice Vibrations and	15						
	thermal properties.							
2	Superconductivity	15						
_								
3	Diamagnetism and Paramagnetism	15						
C		10						
4	Magnetic Ordering	15						
	Total	60						
DET								
DEIA	ALED SYLLABUS							
Unit	Description	Duration						
1	Diffraction of Waves by Crystals and Reciprocal Lattice	15						
	Bragg law, Scattered Wave Amplitude – Fourier analysis, Reciprocal Lattice							
	Vectors, Diffraction Conditions, Brillouin Zones, Reciprocal Lattice to SC,							
	BCC and FCC lattice. Interference of Waves, Atomic Form Factor, Elastic							
	Scattering by crystal, Ewald Construction, Structure Factor.							
	Lattice Vibrations and thermal properties:							
	Vibrations of Monoatomic Lattice, normal mode frequencies, dispersion							
	relation. Lattice with two atoms per unit cell, normal mode frequencies,							
	dispersion relation., Quanization of lattice vibrations, phonon momentum,							
	Inelastic scattering of neutrons by phonons and thermal properties of solids.							
2	Superconductivity: Experimental survey-Meissner effect, Heat capacity,	15						
	energy gap, Microwave and IR properties, isotope effect, Thermodynamics							
	of superconductors, London's Equations, coherence length. Highlights of							
	BCS theory results-Persistent currents. Josephson superconductor tunneling							
	High, temperature superconductors-literature survey of recent research.							

3	Diamagnetism and Paramagnetism:Langevin diamagnetic equation, diamagnetic response, Quantummechanical formulation, core diamagnetism. Quantum Theory ofParamagnetism, Rare Earth Ions, Hund's Rule, Iron Group ions, CrystalField Splitting and Quenching of orbital angular momentum; AdiabaticDemagnetisation of a paramagnetic Salt, Paramagnetic susceptibility ofconduction electrons;	15
4	4 Magnetic Ordering: Ferromagnetic order- Exchange Integral, Saturation magnetisation Magnons, neutron magnetic scattering; Ferrimagnetic order, spinels Yttrium Iron Garnets, Anti Ferromagnetic order. Ferromagnetic Domains Anisotropy energy, origin of domains, transition region between domains Bloch wall, Coercive force and hysteresis.	
Refe 1. C 2. N 3. J 4. A 5. J 6. N P 7. N 8. H N	rence Books: Charles Kittel "Introduction to Solid State Physics", 7th edition John Wiley & so I.W. Ashcroft and N.D. Mermin, Solid State Physics, Brooks/Cole M. Ziman, Principles of the Theory of Solids, Cambridge University Press A.J. Dekker, Solid State Physics, Macmillan Richard Christman "Fundamentals of Solid State Physics" John Wiley & sons A.A.Wahab "Solid State Physics –Structure and properties of Materia ublications 1999. A. Ali Omar "Elementary Solid State Physics" Addison Wesley (LPE) I.Ibach and H.Luth 3rd edition "Solid State Physics – An Introduction to F Materials Science" Springer International Edition (2004)	ons. Ils" Narosa Principles of

Program: Master of Science					Semester : I		
Course :		Physics Pra	ctical-I	Course Code: PSMAPHP112			
Teaching Scheme					Evaluation S	cheme	
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Co Asso Evalu	ontinuous essment and uation (CAE) (Marks)	Term End Examinations (TEE) (Marks)	
	8	-	4		20	80	
Pre-requisite: Knowledge of LCR meter, CRO and DSO. Instruments accuracy, precision, sensitivity, resolution range. Errors in measurements.							

Learning Objectives:

- 4. To teach standard methods of performing practicals based on advanced Optics, Laser, and Electronics.
- 5. To familiarize with current and recent scientific and technological developments.

Course Outcomes:

On successful completion of this course students will be able to:

- 1. Plan and perform standard Physics experiments like Michelson Interferometer, Analysis of sodium spectrum, h/e by vacuum photocell,, Study of He-Ne laser- Measurement of divergence and wavelength, Susceptibility measurement by Quincke's method /Guoy's balance method, Absorption spectrum of specific liquids, Coupled Oscillations and various electronic experiment based on IC.
- 2. Demonstrate an understanding of laboratory procedures including safety, and scientific methods
- 3. Acquire practical skill in handling measuring equipment, electronic circuit analysis and data interpretations required to practically verify theoretical knowledge of Physics and transform it to real life applications in different area of science and technology.

DETA	ILS OF	PRACTICALS	Duration
1.	Regula Group	ar Experiments: p-A	Per Week 8 Hours
	1.	Michelson Interferometer: measurement of wavelength of light/thickness of glass plate	
	2.	Analysis of sodium spectrum.	
	3.	h/e by vacuum photocell.	
	4.	Study of He-Ne laser- Measurement of divergence and wavelength.	
	5.	Susceptibility measurement by Quincke's method /Guoy's balance method.	
	6.	Absorption spectrum of specific liquids.	
	7.	Coupled Oscillations.	
	8.	Practicals using any programming language like Python/C++ or	
		software like Matlab/Scilab/ Mathematica.	
		Numerical Techniques:	
		i) Midpoint method	
		ii) Secant method	
		iii) Trapozoidal Rule	
		iv) Simposon's Rule	
		v) Multidimension integration	
	9.	Practicals using any programming language like Python/C++ or	
		software like Matlab/Scilab/ Mathematica.	
		Matrix Algebra:	
		i) Finding the inverse of the matrix.	
		ii) Matrix multiplication	
		iii) Diagonalization of the matrix	

1v) Finding the eigenvalues of the matrix
10. Practicals using any programming language like Python/C++ or
software like Matlab/Scilab/ Mathematica.
Differential equations:
1) Euler method
n) Kunge- Kutta metnod
Broup - B :
1. Diac and Triac phase control circuit.
2. Delayed linear sweep using 1C 555
3. Regulated power supply using 1C LM 317 voltage regulator IC
 Regulated dual power supply using IC LM 317 & 1C LM 337 voltage regulator ICs
5. Constant current supply using IC 741 and LM317.
6. Active filter circuits (second order)
7. Study of 4 digit multiplex display system.
Reference Books:
1. Experiments in modern Physics – Mellissinos
2. Elementary experiments with Laser-G. White
3. HBCSE Selection camp 2007 Manual
4. Advanced Practical Physics – Worsnop & Flint.
5. Atomic spectra- H.E. White
6. Electronic text lab manual - P.B. Zbar
7. Electronic Principles - A. P. Malvino
8. Opeational amplifiers and linear Integrated circuits - Coughlin & Driscoll
9. Practical analysis of electronic circuits through experimentation - L.MacDonald
10. Integrated Circuits - K. R. Botkar
11. Op-amps and linear integrated circuit technology- R. Gayakwad
Note:
Minimum number of experiments to be performed and reported in the journal $= 10$ with
minimum 4 experiments from each Group. Exemption of two experiments may be given if
perform a mini project under the guidance on teacher in-charge of practical.

Program:	Master of S	Science (Phy	sics)		Semester : I		
Course :		Physics Pra	actical-II		Course Code: PS	MAPH	P134
	Teach	ing Scheme			Evaluation Scheme		
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Continuous Assessment and Evaluation (CAE) (Marks)		Ter Exan s ((M in Q P	m End nination (TEE) larks- Question aper)
	8	-	4		20		80
Knowledg resolution Learning 1. 2. Learning	e of LCR n range and E Objectives: To teach st properties a To familiari g Outcomes:	neter, DMM, rrors in measu tandard metho nd Electronics ize with currer	CRO, DSO, ir rements. ods of performi s. nt and recent sci	ing pra	ents accuracy, precis	sion, se	material
On success 1. 2. 3.	 On successful completion of this course students will be able to: 1. Plan and perform standard Physics experiments like carrier life time measurement, Four probe resistivity, Hall effect, magnetoresistance and various electronic experiment based on IC. 2. Demonstrate an understanding of laboratory procedures including safety, and scientific methods 3. Acquire practical skill in handling measuring equipment, electronic circuit analysis and data interpretations required to practically verify theoretical knowledge of Physics and transform it to real life applications in different area of science and technology. 						rement, ectronic ty, and unalysis of and
DETAILS	OF PRACT	TICALS					Duration
 2. Regular Experiments: Group: A Carrier lifetime by pulsed reverse method Resistivity by four probe method Temperature dependence of avalanche and Zener breakdown diodes DC Hall effect Determination of particle size of lycopodium particles by laser diffraction method Magneto resistance of Bi specimen Microwave oscillator characteristics 							Per Week 8 hours

- 1. Temperature on-off controller using IC
- 2. Waveform Generator using ICs
- 3. Instrumentation amplifier and its applications
- 4. Study of 8 bit DAC
- 5. 16 channel digital multiplexer
- 6. Study of elementary digital voltmeter

Reference Books:

- 1. Op-amps and linear integrated circuit technology by Gayakwad
- 2. Semiconductor electronics, Gibson.
- 3. Physics of semiconductor devices by S.M. Sze.
- 4. Digital principles and applications by Malvino and Leach
- 5. Digital circuit practice by RP Jain
- 6. Digital theory and experimentation using integrated circuits Morris E. Levine (Prentice Hall)
- 7. Practical analysis of electronic circuits through experimentation Lome Macronaid (Technical Education Press)
- 8. Logic design projects using standard integrated circuits John F. Waker (John Wiley & sons)
- 9. Practical applications circuits handbook Anne Fischer Lent & Stan Miastkowski (Academic Press)
- 10. Digital logic design, a text lab manual Anala Pandit (Nandu printers and publishers Pvt.Ltd.)

Any other information :

Note:

- 1. Minimum number of experiments to be performed and reported in the journal = 10 with minimum 4 experiments from each Group. Certified journal is a must to be eligible to appear for the semester end practical.
- 2. Exemption of two experiments may be given if student carries out any one of the following activity.
 - Execute a mini project to the satisfaction of teacher in-charge of practical.
 - Participate in a study tour or visit & submit a study tour report.

SYLLABUS

MSC, PHYSICS, SEMESTER-II							
Program:	Program: Master of Science (Physics) Semes						
6	. 1 1 1	-1 . •					
Course : A	Advanced I	Electronics			Course Cod	le: PS	SMAPH201
	Terel			Г	- 1 t' C . I		_
	Teach	ing Scheme		E	valuation Sc	neme	e
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Continuous Assessment and Evaluation (CAE)		Te Exa s (I	erm End mination s (TEE) Marks-
				(IVIUIKO)	in	Question Paper)
4	_	-	4	~	25		75
Pro-roquie	sito.		1		0		70
Basic know	vledge of M	icroprocessors	and microcontr	ollers and Ar	alog and digit	al sig	mals.
Learning	Objectives:				0 0	0	,
1. To	teach the st	udents concept	t of microproces	sors and micr	ocontrollers ar	nd its	interfacing
wi	th electronic	circuits.					
2. To	familiarize	with current a	nd recent scient	ific and techn	ological devel	opme	ents.
Course O	utcomes:						
After com	pletion of the	e course, learn	ers would be ab	le to:			
CO1: De	scribe funda	mentals of 808	35 microprocess	ors, 8051 mic	crocontroller th	neir ir	nstruction
set	and progran	nming languag	e, signal conditi	oning. State	and label powe	er sup	oply and
inv	erters, instru	mentation circ	cuits and design.				
CO2: Exp	olain workin	g of counters,	timers and subr	outine in 808	5 and 8051, pr	incip	le behind
pov	ver supply a	nd inverters, v	arious circuits u	sing OP-AM	P, Digital and	analo	og
trai	nsmission sv	stem, optical f	ïber.	U	<i>, U</i>		C
CO3. Use	e of instructi	on set in 8085	and 8051 to co	nstruct small	assembly lang	1190e -	programs
Ex:	amine and cl	assify differen	t types of powe	r supply and i	inverters, digit	al and	d analog
trai	smission sv	stem, apply va	rious types of p	eripheral dev	ices to interfac	cing c	circuits.
CO4: An	alyze the var	rious instrume	ntation of circui	ts and implen	nent it on proto	o boa	rd. Inspect
var	ious Assemt	oly language p	rograms in 8085	5 and 8051. O	p-Amp based	circui	its, optical
fibe	er.						
CO5: Sur	nmarize the	instructions se	ets, flags, specia	l function reg	isters, power s	supply	у,
inv	erters, signa	l conditioning	circuits, various	s types of dig	ital transmissio	on sys	stem, and
difi	terent types	ot optical fiber					
Design sin	ple/interfac	ing circuits for	commercial us	e in consume	r and industria	I app	lications,
create sma	II assembly	language prog	ram for simple h	ousehold app	olications.		
Outline of	Syllabus: (per session pl	an)				
Unit D	escription						Duration
							whom

1	Microprocessors and Microcontrollers.	15
2	Analog and Data Acquisition Systems.	15
3	Data Transmissions, Instrumentations Circuits& Designs.	15
4	Instrumentation Circuit Interfacing and Designs	15
	Total	60

DETAILED SYLLABUS :

Unit	Description	Duration
1	 Microprocessors: Counters and Time Delays, Stack and Subroutines Introduction to Microcontrollers: Introduction, Microcontrollers and Microprocessors, History of Microcontrollers and Microprocessors, 	15
	Embedded versus External Memory Devices, 8–bit and 16–bit Microcontrollers, CISC and RISC Processors, Harvard and Von Neumann Architectures, Commercial Microcontroller Devices.	
	 8051 Microcontrollers: Introduction, MCS–51 Architecture, Registers in MCS-51, 8051 Pin Description, Connections,8051 Parallel I/O Ports and Memory Organization. 	
	 8051 Instruction set and Programming: MCS-51 Addressing Modes and Instruction set. 8051 Instructions and Simple programs using Stack Pointer. 	
2	 Power Supplies: Linear Power supply, Switch Mode Power supply, Uninterrupted Power Supply, Step up and Step down Switching Voltage Regulators. 	15
	2. Inverters: Principle of voltage driven inversion, Principle of current driven inversion, sine wave inverter, Square wave inverter.	
	3. Signal Conditioning: Operational Amplifier, Instrumentation Amplifier using IC, Precision Rectifier, Voltage to Current Converter, Current to Voltage Converter, Op-Amp Based Butterworth Higher Order Active Filters and Multiple Feedback Filters, Voltage Controlled Oscillator, Analog Multiplexer, Sample and Hold circuits, Analog to Digital Converters, Digital to Analog Converters.	
3	1. Data Transmission Systems: Analog and Digital Transmissions, Pulse Amplitude Modulation, Pulse Width Modulation, Time	15
	Division Multiplexing, Pulse Modulation, Digital Modulation, Pulse Code Format, Modems.	

	2. Optical Fiber: Introduction to optical fibers, wave propagation and							
	total internal reflection in optical fiber, structure of optical fiber,							
	Types of optical fiber, numerical aperture, acceptance angle, single							
	and multimode optical fibers, optical fiber materials and fabrication							
	attenuation dispersion splicing and fiber connectors fiber optic							
	automation, dispersion, sphering and moet connectors, moet optic							
	communication system, noer sensor, optical sources and optical							
	detectors for optical fiber.							
4	Light Emitting Diodes (LED), Push Buttons, Relays and Latch	15						
	Connections, Keyboard Interfacing, Interfacing 7-Segment Display,							
	LCD interfacing. Measurement applications, Automation and							
	Control Application. Optical analog communication system using							
	fiber link. Electronic intensity meter using optical sensor. IR remote							
	controlled ON/OFF switch.							
Refere	ence Books:							
1.	Microprocessor Architecture, Programming and Applications with the 8085 I	R. S.						
	Gaonkar, 4th Edition. Penram International.							
2.	Microcontrollers Theory and Applications by Ajay V. Deshmukh.							
3.	The 8051 Microcontroller and Embedded Systems, Dr. Rajiv Kapadia, Jaico	Publishing						
	House.							
4.	The 8051 Microcontroller & Embedded Systems by M.A. Mazidi, J.G. Maz	idiand R.D.						
	Mckinlay							
5.	The 8051 Microcontroller: K.J.Ayala: Penram International							
6.	Programming & customizing the 8051 Mocrocontroller: Myke Predko, TMH							
7.	Power Electronics and its applications, Alok Jain, 2nd Edition, Penram Inter	rnational						
0								
8.	Op-Amps and Linear Integrated Circuits - R. A. Gayakwad, 3rd Edition P	rentice Hall						
0	Inula. Operational Amplifiers and Linear Integrated Circuits, Babert F. Coughlin s	nd Fradaria						
9.	E Driscoll 6th Edition Dearson Education Asia	ind Frederic						
10	Ontical Fiber Communications Keiser G Mcgraw Hill Int Student Ed							
10	Electronic Communication Systems: 4th Ed Kennedy and Davis (Tata- M	cGraw						
11	Hill 2004							
12	Electronic Instrumentation, H.S. Kalsi, Tata-McGraw, Hill, 1999							
12								
Progr	am: Master of Science (Physics) Semester : II							

Program: Master of Science (Physics)					Semester : II	
Course : l	Electrodyna	amics			Course Code	:PSMAPH202
Teaching Scheme				Evaluation Scheme		
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Cor Asses Evalua (Marks	ntinuous sment and ntion (CAE))	Term End Examinations (TEE) (Marks-

					in Question Paper)			
4	-	-	4	25	75			
Pre-re	Pre-requisite: Basic of Knowledge of electrostatics, Magnetostatics and Maxwell's Equation.							
Learn Famili in cov	Learning Objectives: Learning Objectives: Familiarizing students with the theoretical framework of Maxwell's equations, Maxwell equations in covariant notation, Electromagnetic waves in vacuum, Moving charges in vacuum, Radiations and its momenties. Belativistic electrodynamics							
and its	and its properties, Relativistic electrodynamics.							
Cours	Course Outcomes:							
After C	completion of the O1: Describe th Four Tenso	e course, learn e Maxwellian rs, Electromag	ers would be ab stress tensor, Lo gnetic waves in v	le to: prentz Transformations, Fou vacuum and medium, bound	r Vectors and lary conditions.			
	Relativistic	covariant Lag	rangian formali	sm.	5			
С	O2: Explain gau energy-mor	ige transforma	tion, Lagrangian , Conservation l	n formalism for relativistic p aws.	point charge, The			
C	O3: Application moments. C	of charged pa Calculate Lagra	rticle to fields-r angian formalisr	adiation, Antennas, Radiation n for relativistic system, ten	on by multipole sors.			
C	04: Distinguish Investigate	phase velocity	y and group velo	City, Categorize fields in w	ave guides.			
	conservatio	n law.	inge purchere in r	in nerd, and energy moment	itum tensor,			
C	05: Compare pr	roperties of mu	ultipole radiation	ns. Evaluate conservation la	w.			
C	O6: Derive exp	ression for free	quency depende	nce of conductivity, frequer	icy dependence			
	of polarizat	oility, frequenc	y dependence of	refractive index for electron	nagnetic waves			
	in matter,	The Lienard-	Wiechert potent	ials, Lagrangian formalism	for relativistic			
	charge part	icie în field.						
Outlin	e of Syllabus:	(per session j	plan)					
Unit	Description				Duration			
1	Maxwell's equ	ations and Ma	axwellian stress	s tensors.	15			
2	Electromagnet	ic waves in va	cuum and mat	ter	15			
3	3Electrodynamics of Moving charges15							
4	Relativistic cov	variant Lagra	ngian Formula	tions.	15			
	Total				60			
DETA	ILED SYLLAI	BUS			I			
Unit			Description		Duration			

1	Maxwell's equations, The Pointing vector, The Maxwellian stress tensor, Lorentz Transformations, Four Vectors and Four Tensors, The field equations and the field tensor, Maxwell equations in covariant notation.	15
2	Electromagnetic waves in vacuum, Polarization of plane waves. Electromagnetic waves in matter, frequency dependence of conductivity, frequency dependence of polarizability, frequency dependence of refractive index. Wave guides, boundary conditions, classification of fields in wave guides, phase velocity and group velocity, resonant cavities.	15
3	Moving charges in vacuum, gauge transformation, The time dependent Green function, The Lienard- Wiechert potentials, Leinard- Wiechert fields, application to fields-radiation from a charged particle, Antennas, Radiation by multipole moments, Electric dipole radiation, Complete fields of a time dependent electric dipole, Magnetic dipole radiation, , Larmor formula, Lienard's generalization of Larmor formula, bremsstrahlung and synchrotron radiation.	15
4	Relativistic covariant Lagrangian formalism: Covariant Lagrangian formalism for relativistic point charges. The energy-momentum tensor, Conservation laws	15
Refer	ence Books:	
Main I	Reference:	
ivituili i		
1. 2.	Greiner, Classical Electrodynamics (Springer- Verlag, 2000) (WG).A. Heald and J.B. Marion, Classical Electromagnetic Radiation, 3rd edition 1983) (HM)	i (Saunders,
Additi	onal references:	
1. 2.	J.D. Jackson, Classical Electrodynamics, 4Th edition, (John Wiley & sons) 20 W.K.H. Panofsky and M. Phillips, Classical Electricity and Magnetism,2n Addison - Wesley) 1962.	05 (JDJ) d edition, (
3.	D.J. Griffiths, Introduction to Electrodynamics,2nd Ed., Prentice Hall, India,1	989.
4.	J.R. Reitz ,E.J. Milford and R.W. Christy, Foundation of Electromagnetic The Addison -Wesley, 1993.	ory, 4th ed.,
5.	Y.K. Lim, Problems and Solutions on Electromagnetism (Major American Un PH.D. Qualifying Questions and S), World Scientific Publishing Company (M 1993).	iversities Iarch 19,

Program: Master of Science (Physics) Semester :II										
Contract		<u> </u>								
Course : Q	Quantum N	lechanics-II		Course Code: PSMAPH203						
Teaching Scheme			Evaluation Scheme							
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Continuous Assessment and Evaluation (CAE) (Marks) i		Continuous Assessment and Evaluation (CAE) (Marks)		Continuous Assessment and Evaluation (CAE) (Marks)		Term End Examination s (TEE) (Marks- in Question Paper)
4		-	4		25	75				
Pre-requisite: Basic Knowledge of Quantum mechanics & Modern Physics.										
Learning techniques	Objectives: , scattering t	Familiarizing heory and rela	students with tivistic quantum	the theo mechan	retical framework ics.	of perturbation				
Course On After comp CO1: Des ide CO2: Exp app CO3: Ap app CO3: Ap app CO3: Con and CO5: Cal ext CO6: Des qua Go. sec Outline of	 Course Outcomes: After completion of the course, learners would be able to: CO1: Describe perturbation theories, approximations methods, quantum scattering theory, identical particles and relativistic quantum mechanics. CO2: Explain time independent and dependent perturbation theory, variational methods. WKB approximations CO3: Apply perturbation theory to remove degeneracy in energy states of quantum systems. applications to variation methods to simple potential problems CO4: Compare energy and scattering amplitude in lab and CM frame. Distinguish symmetric and antisymmetric wave functions, Bosons and fermions. CO5: Calculation of cross sections in first Born approximations. Evaluate the effect of external fields on quantum mechanical systems. CO6: Derive first and second order corrections of energy and eigenfunction. Derive the quantization rules using WKB approximation. Derive fermi Golden rule, The Klein Gordon and Dirac equations , first order transition probability, Calculation of cross sections in first Born approximation. 									
Unit De	escription					Duration				
1 Per	turbation Th	eory.				15				
2 App	2 Approximation Methods									

3	Scattering Theory.	15
4	Relativistic quantum Mechanics, Identical particles.	15
	Total	60
DETA	AILED SYLLABUS	
Unit	Description	Duration
1	Unit-I: Perturbation Theory.	15
	Time independent perturbation theory: First order and second order corrections to the energy eigenvalues and Eigen functions. Degenerate perturbation Theory: first order correction to energy.	
	Time dependent perturbation theory: Harmonic perturbation, Fermi's Golden Rule, sudden and adiabatic approximations, applications.	
2	Unit-II: Approximation Methods :	15
	Variation Method: Basic principle, applications to simple potential problems, He- atom.	
	WKB Approximation: WKB approximation, turning points, connection formulas, Quantization conditions, applications.	
3	Unit-III: Scattering Theory.	15
	Laboratory and centre of mass frames, differential and total scattering cross-sections, scattering amplitude, Partial wave analysis and phase shifts, optical theorem, S-wave scattering from finite spherical attractive and repulsive potential wells, Born approximation	
4	Unit-IV: Relativistic quantum Mechanics, Identical particles.	15
	 Identical Particles: Symmetric and antisymmetric wave functions, Bosons and Fermions, Pauli Exclusion Principle, slater determinant. Relativistic Quantum Mechanics The Klein Gordon and Dirac equations. Dirac matrices, spinors, positive and negative energy solutions physical interpretation. Nonrelativistic limit of the Dirac equation. 	
Refer Main	ence Books:	
wan	references:	
1. 2	Richard Liboff, Introductory Quantum Mechanics, 4th edition, Pearson.	
3.	A Ghatak and S Lokanathan, Quantum Mechanics: Theory and Applications.	5th edition.
4.	N Zettili, Quantum Mechanics: Concepts and Applications, 2nd edition, Wile	ey.

5. J. Bjorken and S. Drell, Relativistic Quantum Mechanics, McGraw-Hill (1965). Additional References:

- 1. W Greiner, Quantum Mechanics: An introduction, Springer, 2004
- 2. R Shankar, Principles of Quantum Mechanics, Springer, 1994
- 3. P.M. Mathews and K. Venkatesan, A Textbook of Quantum Mechanics, Tata McGraw Hill (1977)
- 4. J.J. Sakurai Modern Quantum Mechanics, Addison-Wesley (1994).

Program: Master of Science (Physics)				Semester: II			
Course	•	Solid State	Devices	Course Code: PSMAPH204			
Teaching Scheme			Evaluation Scheme				
Lecture (Hours per weel	e Practical (Hours <) per week)	Tutorial (Hours per week)	Credit	ContinuousTermContinuousExaminAssessment and(TEEvaluation (CAE)(Mar(Marks)Question			
4		-	4		25	75	
Pre-req	uisite: Knowle	edge of Basic	Semiconductor	Bipolar devi	ices and Multil	ayer Devices.	
t	ransistors and	the quantum multilayer dev	i Physics phenerices.	omenon ben	and the semic	conductors diod	
Learnin After co CO1: U U U CO2: C CO3: S CO4: I CO5: S CO6: C Outline	 Learning Outcomes: After completion of the course, students would be able to : CO1: Understand fundamentals of energy structures in semiconductors, temperature dependent of carries properties in semiconductors, Carrier life time, Hall Effect, resistivity and carrier life time measurement, properties of P-N junctions, Varactor characteristics, solar cell, metal-semiconductor contacts, heterojunctions, Quantum well structure, field effect transistors, MESFET, MODFET, MOSFET and integrated circuits. CO2: Classify the various semiconductor devices, intrinsic and extrinsic properties. CO3: Solve the problems covered in the topic. CO4: Investigate the various characteristic properties of the semiconductor devices. CO5: Summarize the various properties and application of semiconductor devices CO6: Construct various solid-state devices 						
Unit	Description					Duratio	
1 8	1 Semiconductor Physics						

2	Semiconductor Devices I	15				
3	Semiconductor Devices II	15				
4	Semiconductor Devices III	15				
	Total	60				
DETA	ILED SYLLABUS					
Unit	Unit Description					
1	Semiconductor Physics: Classification of Semiconductors; Crystal structure with examples of Si, Ge & GaAs semiconductors; Energy band structure of Si, Ge & GaAs; Extrinsic and compensated Semiconductors; Temperature dependence of Fermi- energy and carrier concentration. Drift, diffusion and injection of carriers; Carrier generation and recombination processes- Direct recombination, Indirect recombination, Surface recombination, Auger recombination; Applications of continuity equation-Steady state injection from one side, Minority carriers at surface, Haynes Shockley experiment, High field effects. Hall Effect; Four – point probe resistivity measurement; Carrier life time measurement by light pulse technique.	15				
2	Semiconductor Devices I: p-n junction : Fabrication of p-n junction by diffusion and ion-implantation; Abrupt and linearly graded junctions; Thermal equilibrium conditions; Depletion regions; Depletion capacitance, Capacitance – voltage (C-V) characteristics, Evaluation of impurity distribution, Varactor; Ideal and Practical Current-voltage (I-V) characteristics; Tunneling and avalanche reverse junction break down mechanisms; Minority carrier storage, diffusion capacitance, transient behavior; Ideality factor and carrier concentration measurements; Carrier life time measurement by reverse recovery of junction diode;; p- i-n diode; Tunnel diode, Introduction to p-n junction solar cell and semiconductor laser diode.	15				
3	Semiconductor Devices II: Metal – Semiconductor Contacts: Schottky barrier – Energy band relation, Capacitance- voltage (C-V) characteristics, Current-voltage (I-V) characteristics; Ideality factor, Barrier height and carrier concentration measurements; Ohmic contacts. Bipolar Junction Transistor (BJT): Static Characteristics; Frequency Response and Switching. Semiconductor heterojunctions, Heterojunction bipolar transistors, Quantum well structures.	15				
4	Semiconductor Devices III:	15				

Metal-semiconductor field effect transistor (MESFET)- Device structure, Principles of operation, Current voltage (I-V) characteristics, High frequency performance. Modulation doped field effect transistor (MODFET); Introduction to ideal MOS device; MOSFET fundamentals, Measurement of mobility, channel conductance etc. from Ids vs, Vds and Ids vs Vg characteristics. Introduction to Integrated circuits.

Reference Books:

- 1. S.M. Sze; Semiconductor Devices: Physics and Technology, 2nd edition, John Wiley, New York, 2002.
- 2. B.G. Streetman and S. Benerjee; Solid State Electronic Devices, 5th edition, Prentice Hall of India, NJ, 2000.
- 3. W.R. Runyan; Semiconductor Measurements and Instrumentation, McGraw Hill, Tokyo, 1975.
- 4. Adir Bar-Lev: Semiconductors and Electronic devices, 2nd edition, Prentice Hall, Englewood Cliffs, N.J., 1984.

Additional References:

- 1. Jasprit Singh; Semiconductor Devices: Basic Principles, John Wiley, New York, 2001.
- 2. Donald A. Neamen; Semiconductor Physics and Devices: Basic Principles, 3rd edition, Tata McGraw-Hill, New Delhi, 2002.
- 3. M. Shur; Physics of Semiconductor Devices, Prentice Hall of India, New Delhi, 1995.
- 4. Pallab Bhattacharya; Semiconductor Optoelectronic Devices, Prentice Hall of India, New Delhi, 1995.

Program: Master of Science (Physics)				Semester : II		
Course : Physics Practical-I				Course Code: PSMAPHP212		
Teaching Scheme Evaluation Scheme						heme
Lecture (Hours per week)	Practical Tutorial (Hours (Hours per Credit per week) week)		Credit	Continuous Assessment and Evaluation (CAE)		Term End Examination s (TEE) (Marks-
				(Iviar	KS)	in Question Paper)
	8	-	4		20	80
Pre-requise Knowledge	Pre-requisite: Knowledge of LCR meter, CRO and DSO. Instruments accuracy, precision, sensitivity, resolution					

range. Errors in measurements.

Learning Objectives:

- 6. To teach standard methods of performing practicals based on advanced Optics, Laser, and Electronics.
- 7. To familiarize with current and recent scientific and technological developments.

Learning Outcomes:

On successful completion of this course students will be able to:

- Design and perform standard Physics experiments like Zeeman Effect using Fabry-Perot etalon /Lummer — Gehrecke plate, Characteristics of a Geiger Muller counter and measurement of dead time, Ultrasonic Interferometry-Velocity measurements in different Fluids, Measurement of Refractive Index of, Liquids using Laser, I-V/ C-V measurement on semiconductor specimen, Double slit- Fraunhofer diffraction, .Determination of Young's modulus.
- 2. Acquire practical skill in handling measuring equipment, electronic circuit analysis and data interpretations required to practically verify theoretical knowledge of Physics and transform it to real life applications in different area of science and technology.

List of	practicals		Duration			
	Regular H	Experiments:	Per			
	Group: A		Week			
	1.	Zeeman Effect using Fabry-Perot etalon /Lummer Gehrecke plate	8 hours			
	2.	Characteristics of a Geiger Muller counter and measurement of				
		dead time				
	3.	Ultrasonic Interferometry-Velocity measurements in different				
		Fluids				
	4.	Measurement of Refractive Index of Liquids using Laser				
	5.	I-V/C-V measurement on semiconductor specimen				
	6.	Double slit- Fraunhofer diffraction (missing order etc.)				
	7.	Determination of Young's modulus of metal rod by interference				
		method				
	Grou	p: B				
	1.	Adder-subtractor circuits using ICs				
	2.	Study of Presettable counters- 74190 and 74193				
	3.	TTL characteristics of Totempole, Open collector and tristate				
		devices				
	4.	Pulse width modulation for speed control of dc toy motor				
	5.	Study of sample and hold circuit				
	6.	Switching Voltage Regulator				
Refer	ence Books	:	1			
1.	Op-amps a	and linear integrated circuit technology by Gayakwad				
2.	Digital pri	nciples and applications by Malvino and Leach				
3.	3. Digital circuit practice by RP Jain					
4.	Digital the	eory and experimentation using integrated circuits - Morris E. Levine	(Prentice			
	Hall)					

- 5. Practical analysis of electronic circuits through experimentation Lome Macronaid (Technical Education Press)
- 6. Logic design projects using standard integrated circuits John F. Waker (John Wiley & sons)
- 7. Practical applications circuits handbook Anne Fischer Lent & Stan Miastkowski (Academic Press)
- 8. Digital logic design, a text lab manual Anala Pandit (Nandu printers and publishers Pvt.Ltd.)
- 9. Manual of experimental physics --EV-Smith c). Experimental physics for students Whittle &. Yarwood

10. Sirohi-A course of experiments with He-NeLaser; Wiley Eastern Ltd

Note:

- 1. Minimum number of experiments to be performed and reported in the journal = 10 with minimum 4 experiments from each Group Certified journal is a must to be eligible to appear for the semester end practical.
- 2. Exemption of two experiments may be given if student carries out any one of the following activity.
 - Execute a mini project to the satisfaction of teacher in-charge of practical.
 - Participate in a study tour or visit & submit a study tour report.

Program: Master of Science					Semester : II	
Course : Physics Practical-II				Course Code: PSMAPHP234		PSMAPHP234
	Teach	ing Scheme	Evaluation Scheme			
Lecture (Hours per week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	ContinuousTerm EndAssessment andExaminationEvaluation (CAE)(TEE)(Marks)(Marks)		Term End Examinations (TEE) (Marks)
	8	-	4		20	80
Pre-requis	site:					
Knowledge of LCR meter, CRO and DSO. Instruments accuracy, precision, sensitivity, resolution						
range. Errors in measurements.						
Learning Objectives:						
1. To teach standard methods of performing practicals based on advanced Optics, Laser, and						
Electronics.						
2. To familiarize with current and recent scientific and technological developments.						
Learning Outcomes:						
On successful completion of this course students will be able to:						
1 Design and perform standard Dhusias appariments like Parrier appacitance of a junction						

1. Design and perform standard Physics experiments like Barrier capacitance of a junction diode, Linear Voltage Differential Transformer, Faraday Effect-Magneto Optics etc, advanced analog and digital electronic experiments based on IC.

	2.	Acquire practical skill in handling measuring equipment, electronic circuit anal	lysis and
		data interpretations required to practically verify theoretical knowledge of Phy	vsics and
		transform it to real life applications in different area of science and technology	, sies and
		transform it to real me applications in unreferit area of science and technology	•
T • 4 6			Derection
List of	pra	acticals:	Duration
	D		
	Re	egular Experiments:	Per
	Gr	roup: A	Week 8
		1. Carrier Mobility by conductivity	nours
		2. Dielectric constant and verification of Curie-weiss law	
		5. Barrier capacitance of a junction diode	
		4. Linear voltage differential Amplifier	
		5. Faraday-Magneto optic effect	
		6. Energy Band gap by four probe method, with varying	
		Crown B	
		Group: B	
		 Shift registers Study of 2025 microprocessor. Kit, and execution of simple 	
		2. Study of 8085 incroprocessor Kit and execution of simple Programmes	
		3 Waveform generation using 8085	
		$4 \qquad \text{SID} & \text{SOD} \text{ using 8085}$	
		5 Ambient Light control powerswitch	
		6 Interfacing TTL with buzzers relays motors and solenoids	
		 7 Precision rectifiers using OnAmn 	
		8 Automatic gain and volume controller	
		9. DC-DC converter	
Refer	ence	Books:	
	1.	Semiconductor electronic by Gibson	
	2.	Electronic Instrumentation and measurements, W D Cooper	
	3.	Electronic engineering by Millman Halkias	
	4.	Manual of experimental Physics, E V Smith	
	5.	Solid state Physics, Dekkar.	
	6.	Experiments in digital principles-D.P. Leach	
	7.	Digital principles and applications - Malvino and Leach	
	8.	Microprocessor Architecture, Programming and Applications with the 8085	- R. S.
		Gaonkar	
	9.	Microprocessor fundamentals- Schaum Series-Tokheim	
-	10.	Electronic Instrumentation H. S. Kalsi	
Note:			
	1.	Minimum number of experiments to be performed and reported in the journ	nal = 10
		with minimum 4 experiments from each Group. Certified journal is a mu	ist to be
		eligible to appear for the semester end practical.	
	2.	Exemption of two experiments may be given if student carries out any one of	f the
		following activity.	
	•	Execute a mini project to the satisfaction of teacher in-charge of practical.	
	•	Participate in a study tour or visit & submit a study tour report.	
Ì			

EVALUATION PATTERN

The performance of the learner will be evaluated in two components. The first component will be a Continuous Assessment with a weightage of 25% of total marks per course. The second component will be a Semester end Examination with a weightage of 75% of the total marks per course. The allocation of marks for the Continuous Assessment and Semester end Examinations is as shown below:

a) Continuous Evaluation – 25% of the total marks per theory course:

Particulars	Percentage
Component I -Class test	15
Component II - Assignment / Project/ VIVA	10

b) Semester end Examination-75% of the total marks per theory course:

i) Duration – These examinations shall be of a duration of two and a half hours.

ii) Question paper pattern of semester end examination for M.Sc, Semester-I to IV, to be implemented from academic year 2020-21.

Q1.	Attempt any Two. (Questions on unit- I : Theory and problem solving)						
	i)		09				
	ii)		09				
	iii)		09				
Q2.	Attempt any Two. (Questions on unit- II : Theory and problem solving)						
	i)		09				
	ii)		09				
	iii)		09				
Q3.	3. Attempt any Two. (Questions on unit- III: Theory and problem solving)						
	i)		09				
	ii)		09				
	iii)		09				
Q4.	Attemp	t any Two. (Questions on unit- IV: Theory and problem solving)					
	i)		09				
	ii)		09				
	iii)		09				
Q5	Attemp	t any One.					

i)	(Questions on unit –I/unit- II : Short answer type question)	3
ii)	(Questions on unit- III/unit- IV: Short answer type question)	3

c) Details of Semester-end examination for practical courses:

A candidate will be allowed to appear for the semester end practical examination only if the candidate submits a certified journal at the time of practical. The duration of the practical examination will be four hours. There will be two experiments, one long experiment of 60 marks and one short of 20 marks, through which the candidate will be examined in practical.

d) Details of Continuous Assessment for practical courses:

Practical Skill in performing experiments, data presentation, analysis and interpretation of results: (Marks:20)

Signature HOD Signature Approved by Vice –Principal Signature Principal