

Shri Vile Parle Kelavani Mandal's MITHIBAI COLLEGE OF ARTS, CHAUHAN INSTITUTE OF SCIENCE & AMRUTBEN JIVANLAL **COLLEGE OF COMMERCE AND ECONOMICS (AUTONOMOUS)** NAAC Reaccredited 'A' grade, CGPA: 3.57 (February 2016), Granted under RUSA, FIST-DST & -Star College Scheme of DBT, Government of India, Best College (2016-17), University of Mumbai

Affiliated to the **UNIVERSITY OF MUMBAI**

Program: Bachelor of Science Course: Microbiology (USMAMB) Semester V & VI Choice Based Credit System (CBCS) with effect from the Academic year 2020-21

A.C. No: <u>7</u> Agenda No: <u>Supplementary</u> 4.6 (ii)

PROGRAMME SPECIFIC OUTCOMES (PSO'S)

On completion of the B.Sc - Microbiology, the learners should be enriched with knowledge and be able to-**PSO1:** Articulate and communicate in the specialized terminology pertaining to microbiology.

PSO2: Define and explain the theories and practices of the various fields/ disciplines in microbiology.

PSO3: Explain the technologies and methods commonly used in microbiology.

PSO4: Acquire the requisite skills applicable to microbiological analysis.

PSO5: Describe the genetic and ecological relationships between microorganisms.

PSO6: Discuss the applications of microorganisms in the various areas of biotechnology.

Preamble

The grant of autonomy along with DBT Star funding has provided a platform for designing a curriculum that is dynamic and meets the need of the hour. The inherent freedom under autonomy provides for a multisensory learning experience.

The syllabus is as per the Credit Based Semester and Grading System (CBSGS) and continuous evaluation consisting of components of Internal Assessment and External Assessment. The changes introduced conform to the learning objectives.

Keeping in tune with the progression of the syllabus and maintaining continuity of flow of information from F.Y.B.Sc. and S.Y.B.Sc., the T.Y.B.Sc syllabus has been devised. Several changes are introduced in the year 2019-20 syllabus of the T.Y.B.Sc under autonomy to keep the students up to date with latest developments in the field of Microbiology. Some of the modules of the University syllabus dealing with fundamentals of Microbiology have been retained whilst other modules have been restructured as per the need of learning objectives. In semesters V and VI the learner will learn Advanced Genetics, Virology, Medical Microbiology, Immunology, Microbial Biochemistry and Bioprocess Technology. Some of the interdisciplinary modules such as bioinformatics, recombinant biotechnology, and bioinstrumentation will help the learner to understand the subject from a broader perspective.

All the 8 courses of theory and practicals (Semester-V and Semester-VI together) are compulsory to the students offering microbiology as a single major subject (6 units pattern of the old course). These courses are

- 1. USMAMB501 and USMAMB601
- 2. USMAMB502 and USMAMB602
- 3. USMAMB503 and USMAMB603
- 4. USMAMB504 and USMAMB604

The syllabus was framed with the critical in-puts from the Board of Study members and the faculty of the Microbiology department.

Evaluation Pattern

The performance of the learner will be evaluated in two components. The first component will be a Continuous Assessment with a weightage of 25% of total marks per course. The second component will be a Semester end Examination with a weightage of 75% of the total marks per course. The allocation of marks for the Continuous Assessment and Semester end Examinations is as shown below:

a) Details of Continuous Assessment (CA)

25% of the total marks per course:

Continuous Assessment	Details	Marks
Component 1 (CA-1)	Assignment	15 marks
Component 2 (CA-2)	Class Test	10 marks

b) Details of Semester End Examination

75% of the total marks per course. Duration of examination will be two and half hours.

Question Number	Description	Marks	Total Marks
1	Question 1 will be based on module I, question 2 on Module II, question 3 on module III and question 4 on module IV.	A (10 x 1) = 10 marks B = 5 marks	15
2	Each question will be subdivided into two sub- questions "A" and "B". Sub-question "A" will	A (10 x 1) = 10 marks B = 5 marks	15
3	have two questions (of 10 marks each) out of which any one will be attempted. Total marks allotted to sub-question	A ((10 x 1) = 10) marks B = 5 marks	15
4	"A" will be 10 marks. Sub-question "B" will be compulsory for 5 marks without internal choice.	A (10 x 1) = 10 marks B = 5 marks	15
5	It will have questions from all Four modules of the course. It will have 4 questions (of 5 marks each), one from each module, out of which any 3 will be attempted.	3 x 5 = 15 marks	15
		Total Marks	75

meraid.

Dr. Meenakshi Vaidya Approved by Vice – Principal

Dr. Krutika Desai Approved by Principal

Page 3 of 49

HOD

Approved by Vice – Principal

Approved by Principal

Program: B.Sc.				Semester: V	
Course:	MICROBIAL GEN	ETICS	Course Code: USMAMB501		IAMB501
Teaching Scheme			Evaluation Scheme		
(Hours	Lecture (Hours per week)Tutorial (Hours per week)CreditContinuous Assessment (CA) (Percentage)3.2-2.525		Assessment (CA)	End Semester Examinations (ESE)	
3.2			(Percenta) 75	ge)	
Microbia practical involves and DNA learner w bioinforr Course After con	tools for generating an understanding of A repair. It gives an of will be exposed to deta	g, processing and un Cell biology, DNA r overview of the brar ails of plasmids, tran e, learners would be		genetic information. inge and recombinationdel organisms. Add	The cours on, mutatio itionally, th
CO2: E CO3: A CO4: C	Explain regulation of comply knowledge abor Compare homologous	cell cycle, cell signal at horizontal gene tra recombination and s	1	on among prokaryote	S
CO2: E CO3: A CO4: C CO5: D	Explain regulation of comply knowledge abor Compare homologous	cell cycle, cell signal ut horizontal gene tra recombination and s causes of mutations	ing and apoptosis ansfer mechanisms for m site-specific recombination	on among prokaryote	S
CO2: E CO3: A CO4: C CO5: D	Explain regulation of comply knowledge about 20	cell cycle, cell signal ut horizontal gene tra recombination and s causes of mutations	ing and apoptosis ansfer mechanisms for m site-specific recombination	on among prokaryote	S
CO2: E CO3: A CO4: C CO5: D	Explain regulation of compare homologous Describe the types and of Syllabus: (per ses	cell cycle, cell signal ut horizontal gene tra recombination and s causes of mutations sion plan)	ing and apoptosis ansfer mechanisms for m site-specific recombination	on among prokaryote	s repair No of
CO2: E CO3: A CO4: C CO5: D Outline Module	Explain regulation of compare homologous Describe the types and of Syllabus: (per ses Description	cell cycle, cell signal ut horizontal gene tra recombination and s causes of mutations sion plan)	ing and apoptosis ansfer mechanisms for m site-specific recombination	on among prokaryote	s repair No of Lecture
CO2: E CO3: A CO4: C CO5: D Outline Module	Explain regulation of complexity knowledge abore compare homologous Compare homologous Describe the types and Of Syllabus: (per ses Description DNA REPLICATI CELL BIOLOGY	cell cycle, cell signal ut horizontal gene tra recombination and s causes of mutations sion plan)	ing and apoptosis ansfer mechanisms for m site-specific recombination	on among prokaryote as involved in DNA r	s repair No of Lectures 15
CO2: E CO3: A CO4: C CO5: D Outline Module	Explain regulation of comparing the second symplectic compare homologous Ceccuration Ceccuration Ceccuration GENE TRANSFE	cell cycle, cell signal ut horizontal gene tra recombination and s causes of mutations sion plan) CON R MECHANISMS DN	ing and apoptosis ansfer mechanisms for m site-specific recombination in DNA and mechanism	on among prokaryote as involved in DNA r	s repair No of Lectures 15 15
CO2: E CO3: A CO4: C CO5: D Outline Module 1 2 3	xplain regulation of c xpply knowledge abor compare homologous compare homologous cescribe the types and of Syllabus: (per ses Description DNA REPLICATI CELL BIOLOGY GENE TRANSFE RECOMBINATIO	cell cycle, cell signal ut horizontal gene tra recombination and s causes of mutations sion plan) CON R MECHANISMS DN	ing and apoptosis ansfer mechanisms for m site-specific recombination in DNA and mechanism	on among prokaryote as involved in DNA r	s repair No of Lecture 15 15 15

Unit	Topic and Description	No. of lectures 48 minutes/lecture	No. of Credits
Module I	DNA REPLICATION	15 Lectures	2.5
-	Historical perspective— conservative, dispersive, semi-conservative, Bidirectional and semi-discontinuous	02	
	Prokaryotic DNA replication – Details of molecular mechanism involved in Initiation, Elongation and Termination	05	
	Enzymes and proteins associated with DNA replication - primase, helicase, topoisomerase, SSB, DNA polymerases, ligases, Ter and Tus	05	
	proteins Eukaryotic DNA replication Molecular details	02	
	of DNA synthesis, replicating the ends of the chromosomes Rolling circle mode of replication	01	
	Koning circle mode of replication		
Module II	CELL BIOLOGY	15 Lectures	
	Structure of eukaryotic cell	01	
	Cell cycle	04	
	Mitosis and meiosis	03	
	Cell signaling	03	
	Apoptosis	04	

Module III	GENE TRANSFER MECHANISMS IN BACTERIA	15 Lectures	
	AND HOMOLOGOUS RECOMBINATION		
	Transformation	04	
	Introduction and History		
	Types of transformation in prokaryotes		
	Natural transformation in <i>Streptococcus</i>		
	pneumoniae, Haemophilus influenzae, and		
	Bacillus subtilis		
	Mapping of bacterial genes using		
	transformation.		
	Problems based on transformation.		
	Conjugation	05	
	Discovery of conjugation in bacteria		
	Properties of F plasmid/Sex factor		
	The conjugation machinery		
	Hfr strains, their formation and mechanism		
	of conjugation		
	F factor, origin and behavior of F' strains,		
	Sexduction.		
	Mapping of bacterial genes using		
	conjugation (Wolman and Jacob experiment).		
	Problems based on conjugation		
	Transduction	03	
	Introduction and discovery		
	Generalised transduction		
	Use of Generalised transduction for		
	mapping genes		
	Specialised transduction		
	Problems based on transduction		
		03	
	Recombination in bacteria		
	General/Homologous recombination		
	Molecular mechanism		
	Holliday model of recombination		
	Site-specific recombination		

Module IV	MUTATION AND REPAIR	15 Lectures	
	Mutation		
	Terminology: alleles, homozygous,	01	
	heterozygous, genotype, phenotype, Somatic		
	mutation, Germline mutation, Gene mutation,		
	Chromosome mutation, phenotypic lag,		
	hotspots and mutator genes.		
	Types of mutations: Point mutation,	04	
	reverse mutation, suppressor mutation,		
	frameshift mutation, conditional lethal		
	mutation, base pair substitution, transition,		
	transversion, missense mutation, nonsense		
	mutation, silent mutation, neutral mutation,		
	pleiotropic mutations.		
	Causes and mechanisms of mutation:	05	
	Natural/spontaneous mutation & Induced		
	mutation. Replication error, depurination,		
	deamination.		
	Chemical mutagens- base analogues, nitrous		
	acid, hydroxyl amine, intercalating agents and		
	alkylating agents. Physical mutagens.		
	Biological mutagen (only examples).		
	Ames test		
	Detection of mutants		
	Fluctuation test.		
	DNA Repair		
	Mismatch repair	05	
	Light repair		
	Repair of alkylation damage		
	Base excision repair		
	Nucleotide excision repair		
	SOS repair		
	Total	60	2.5

RECOMMENDED READING:

ESSENTIAL READING:

- 1. B. A. Pierce (2008), "Genetics a conceptual approach", 3rd ed., W. H. Freeman and company.
- 2. M.Madigan, J.Martinko, J.Parkar, (2009), "Brock Biology of microorganisms", 12th ed., Pearson Education International.
- 3. Joanne M. Willey, Linda M. Sherwood, Christopher J. Woolverton Prescott's Microbiology 7th Edition McGraw Hill International Edition.
- 4. R. Weaver Molecular Biology 3rd Edition McGraw Hill International Edition
- 5. N. Turn and J. Trempy Fundamental Bacterial Genetics 2004 Blackwell Publishing
- 6. H.K. Das Textbook of Biotechnology 4th Edition. Wiley dream Tech India Pvt. Ltd.
- Gerald Karp Cell and Molecular Biology- Concepts and Experiments 3rd Edition John Wiley and Sons, New York
- 8. Geoffrey M. Cooper and Robert E. Hausman The Cell-A Molecular Approach 5th

SUPPLEMENTARY READING:

- 1. P. J. Russell (2006), "Genetics-A molecular approach", 2nded.
- 2. D.Nelson and M.Cox, (2005), "Lehninger's Principles of biochemistry", 4th ed., Macmillan worth Publishers.
- 3. B.Lewin, "Genes IX", Jones and Bartlett publishers.
- 4. JD Watson, "Molecular biology of the gene", 5th edition, 2004 Pearson.
- 5. S. Simmons, "Principles of genetics", 3rdedn. John Wiley and sons, Inc.
- 6. E.D.P. De Robertis and E.M.F. De Robertis, Jr., 8th edition, Cell and molecular biology, Wolters Kluver.
- 7. Fairbanks and Anderson, (1999), "Genetics", Wadsworth Publishing Company.
- 8. R. H. Tamarin, (2004), "Principles of genetics", Tata McGraw Hill.
- 9. Any other reference sources as recommended by the course instructor.

Program: B.S				Semester: V	
Course: MEDICAL MICROBIOLOGY AND IN PART-I			IMMUNOLOG	Y:	Course Code: USMAMB502
Teaching Scheme Evaluation Scheme			luation Scheme		
Lecture (Hours per week)	Tutorial (Hours per week)	Credit	Continuous End Semester Examination Assessment End Semester Examination (CA) (Percentage)		Semester Examinations (ESE) (Percentage)
3.2	-	2.5	25		75
in the syllabus. It will also enable the students to appreciate the interplay between the virulence factors of pathogens and the host defence mechanisms.Students of T.Y.B.Sc. Microbiology have had an introductory course on Immunology in S.Y.B.Sc. The present course encompasses efforts to understand how multicellular organisms have evolved to survive					of various diseases that are enlisted
in the syllabu pathogens and Students of T present course	s. It will also I the host defe T.Y.B.Sc. Mic e encompasses	enable the students nce mechanisms. robiology have had	to appreciate the i an introductory c nd how multicellu	nterpla course o ilar org	y between the virulence factors of on Immunology in S.Y.B.Sc. The

Module	Description	No of Lectures
1	BACTERIAL STRATEGIES FOR EVASION AND STUDY OF A FEW DISEASES- I	15
2	STUDY OF A FEW INFECTIOUS DISEASES - II	15
3	BASIC IMMUNOLOGY-I	15
4	BASIC IMMUNOLOGY-II	15
	Total	60
PRACTI	CALS	60

Unit	Topic and Description	No. of Lectures	No. of Credits
Module I	BACTERIAL STRATEGIES FOR EVASION AND	15 Lectures	2.5
	STUDY OF A FEW DISEASES - I		
	Study of virulence mechanisms in bacteria		
	Identifying bacteria that cause disease	01	
	Genomics and bacterial pathogenicity	01	
	The clonal nature of bacterial pathogens		
	Mobile genetic elements		
	Pathogenicity islands		
	Bacterial virulence factors	03	
	Adherence factors		
	Invasion of host cells and tissues		
	Toxins		
	Exotoxins		
	Exotoxins associated with diarrhoeal		
	diseases and food poisoning		
	LPS of gram-negative bacteria		
	Enzymes		
	Tissue degrading enzymes		
	IgA1 proteases		
	Antiphagocytic factors		
	Intracellular pathogenicity		
	Antigenic heterogeneity		
	The requirement for iron		
	The role of biofilms		
	Study of A Few Infectious Diseases - I	02	
	Urinary Tract – system & infections		
	Leptospirosis		
	Tabular form of other infectious agents causing		
	UTI Respiratory tract system & infections		
	Respiratory tract system & infections S. pyogenes infections	08	
	Diphtheria		

	Tuberculosis	
	Pneumonia caused by K.pneumoniae	
	Tabular form of other respiratory tract infections	
Module II	STUDY OF A FEW INFECTIOUS DISEASES - II	15 Lectures
	Claim standards & infactions	
	Skin – structure & infections	05
	Leprosy Europeinfections Oral Thrush	05
	Fungal infections- Oral Thrush	
	Pyogenic skin infections - <i>Pseudomonas & S. aureus</i> .	
	Gastrointestinal tract – system & infections	
	Enteric fever- Salmonella	08
	Shigellosis	
	Rotavirus - diarrhoea	
	Dysentery - Entamoeba histolytica	
	Infections - Enteropathogenic E. coli strains	
	Tabular form of other gastrointestinal tract infections	
	Vector-borne diseases	02
Module	BASIC IMMUNOLOGY- I	15
III	Antigen presenting cells	Lectures
	Antigen presentation- professional and non-	03
	professional cells	
	Processing pathways, (Cytosolic and Endocytic	
	pathway)	05
	The Complement System	05
	The functions of complement The components of complement	
	Complement activation	
	Classical pathway	
	Alternative pathway	
	Lectin pathway	
	Membrane attack complex	
	Regulation of the complement system	
	Biological consequences of complement	
l I		

	activation Immunoglobulins Immunoglobulins – basic and fine structure Immunoglobulin classes and biological activities Antigenic determinants on immunoglobulins – isotypes, allotypes, idiotypes Immunoglobulin Superfamily Monoclonal antibodies, Production and applications	07	
Module IV	BASIC IMMUNOLOGY- II Antigens Immunogenicity versus antigenicity Factors that influence immunogenicity Epitopes / antigen determinants (only concepts) Haptens and antigenicity Immunogenicity of some natural substances Types of antigens T cells Receptors, structure (alpha-beta, gamma- delta TcR) TcR-CD3 complex structure and functions. Accessory molecules. Subsets of T cells (Th (Th1, Th2, T reg) T cell activation, Costimulatory molecules, T cell differentiation (memory and effector cell)	15 Lectures 05	
	 B cells Receptors structure and organization B cell activation and differentiation – Thymus dependent and independent antigens, B cell activating signals, Role of Th cells in Humoral response, formation of T – B conjugates, CD40 / CD40L interaction, T_H cell cytokine signals. 	05	
	Total	60	2.5

Program: B.S	Sc.	Semester: V		
Course: Prac	Course: Practicals			Course Code: USMAMBP512
Teaching Scheme			Evaluation Scheme	
Practicals (Hours per week)	Tutorial (Hours per week)	Credit	Continuous Assessment (CA) (Percentage)	End Semester Examinations (ESE) (Percentage)
6.4	-	3	25	75

PRACTICALS	No. of lectures 120
1. UV survival curve – determination of exposure time leading to 90% reduction	n
2. Isolation of mutants using UV mutagenesis	
3. Replica plate technique for selection and characterization of mutants – auxotroph and antibiotic resistant	
4. Isolation and detection of plasmid DNA [Group Experiment]	
5. Preparation of competent cells and transformationIllustration of the role of plasmids in antibiotic resistance through curing of the plasmid.	
6. Study of iron sequestration- siderophore production in <i>Pseudomonas</i> spp.[Group experiment]	
7. Acid fast staining of <i>M. tuberculosis</i> .	
8. To determine SLO and SLS activity of <i>S</i> .pyogenes	
 Identification of isolates obtained from nasal swabs, skin swab, pus, sputum, stool and urine by morphological, cultural and biochemical properties. 	
10. Antigen Preparation: O and H antigen preparation of Salmonella.	
Confirmation by slide agglutination [Group Experiment]	
11. Biochemical test for identification of pathogens	

To develop scientific temper and interest by exposure through industrial visits and study/educational tours is recommended in each semester.

RECOMMENDED READING:

ESSENTIAL READING:

- S. Riedel, J. A. Hobden, S. Miller, S. A. Morse, T. A. Mietzner, B. Detrick, T. G. Mitchell, J. A. Sakanari, P. Hotez. R. Meija Jawetz, Melnick and Adelberg's Medical Microbiology 26thy Edition 2013 lange Publication.
- 2. Arti Kapil (Ed) Ananthnarayan and Panicker's Textbook of Microbiology 9th edition Orient Blackswan.
- Brenda A. Wilson, Aligail A. Salyers, Dixie D. Whitt, Whitt, Malcolm, E. Winkler Bacterial Pathogenesis -A Molecular Approach 2nd Editionn 2002 ASM Press
- 4. Baron Samuel Medical Microbiology 4th Edition
- 5. Judith A Owen, Jenni Punt, Sharon A. Stranford, Patricia P Jones, Janis Kuby Immunology, 7th Edition 2013 W H Freeman and Company.

SUPPLEMENTARY READING:

- 1. Judith A Owen, Jenni Punt, Sharon A. Stranford, Patricia P Jones, Janis Kuby Immunology, 6th Edition 2013 W H Freeman and Company.
- 2. S. Pathak and U. Palan Immunology: Essential and Fundamental 1st and 3rd edition Capital Publishing Company
- 3. Fahim Khan. The Elements of Immunology 1st Edition
- 4. Any other reference sources as recommended by the course instructor.

Program				Semester: V	· · · · · · · · · · · · · · · · · · ·	
Course:	MICROBIAL BIOCH	IEMISTRY:	PART-I	Course Code: USN	e: USMAMB503	
	Teachin	g Scheme		Evaluation Sch	eme	
Lectur (Hours) week	rs per (Hours per Credit Assessment (CA) End Semester Exam			End Semester Examina (Percentage)		
3.2	-	2.5	25	75		
systems, mechanis nutritiona They wil Students and photo Course (After con CO1: Su CO2: De mechanis CO3: Ex CO4: Ela CO5: Di CO6: Ap	energy transformation ms of transport of nur- al categories of microor l learn catabolism of si will learn detailed mec ophosphorylation. Stude Dutcomes: npletion of the course, I mmarize the process of scribe and explain the e m of ATP synthesis. plain the mechanism of aborate upon the mecha	and concept trients & solu- ganisms. mple and con- hanism of ge ents also learr earners would solute transpe- electron transpe- electron transpe- bioluminesco- nism of photo- ble and compl rgetics to the	of metabolism. In this utes and further in de nplex carbohydrates v neration of ATP by su <u>n metabolism of inorga</u> d be able to: ort across the cell. port chains in prokaryot ence, its significance a osynthesis in prokaryot lex carbohydrates by co catabolism of carbohy	tes. entral metabolic pathways.	roduced with ts in various lic pathways on, oxidative lphur.	
		Sume mu Ser				
Outline	of Syllabus: (per sessio	on plan)				
Module	Description				No of Lectures	
1 BIOLOGICAL MEMBRANES & TRANSPORT						
2	BIOENERGETICS	AND BIOL	UMINESCENCE			
	PROKARYOTIC P	UOTOSVNI			15	
3	INORGANIC MET		THESIS &		15 15	
3		ABOLISM				
	INORGANIC MET	ABOLISM			15	

Unit	Topic and Description	No. of lectures	No. of Credits
Module I	BIOLOGICAL MEMBRANES & TRANSPORT	15 Lectures	2.5
	Composition and architecture of membrane	01	
	Role of cell wall and membrane in transport of molecules	02	
	Methods of studying solute transport	02	
	Using whole cells		
	Using Liposomes		
	Using Proteoliposome		
	Solute transport across membrane	07	
	Facilitated / passive transport		
	Superfamilies' of transporter		
	Kinetics of solute transport		
	Active transport		
	Co transport across plasma membrane		
	(Uniport, Antiport, Symport)		
	Energy use in Active transport –proton		
	motive force, e.g. lactose transport		
	ATPases and transport e.g. Na-K ATPases		
	ABC transporters e.g. Histidine transport		
	Shock sensitive system – Role of binding		
	proteins e.g. Maltose uptake		
	Potassium transport in bacteria		
	Phosphotransferase system		
	Schematic representation of various		
	Membrane transport mechanisms in E. coli		
	Other examples of solute transport	03	
	Iron transport : A special problem	03	
	Bacterial protein export		
	Bacterial membrane fusion central to		
	many biological processes		

Module	BIOENERGETICS AND BIOLUMINESCENCE	15	
II		Lectures	
	Biochemical mechanism of generating ATP-	01	
	Substrate level, Oxidative, and Photo		
	Phosphorylation		
	Electron transport chain (ETC) in	07	
	eukaryotes and prokaryotes		
	Components of electron transport chain.		
	Carriers in ETC		
	Electron transport chain in chemolithotrophs,		
	facultative heterotrophs and aerobes(one		
	representative example with their Carriers of		
	ETC)		
	Oxidative phosphorylation		
	P/O ratio		
	proton motive force		
	redox potential		
	ATP synthesis	03	
	Free energy released during electron transfer		
	from NADH to O_{2} .		
	Chemiosmotic coupling hypothesis		
	ATP synthase- structure and mechanism of		
	ATP synthesis		
	Bacteriorhodopsin	01	
	Definition, Significance, Function as proton		
	pump.		
	Bioluminescence		
	Importance, mechanism and application	0.2	
		03	

Module	PROKARYOTIC PHOTOSYNTHESIS &	15	
III	INORGANIC METABOLISM	Lectures	
	Prokaryotic photosynthesis	07	
	Phototrophic prokaryotes		
	Oxygenic		
	Anoxygenic phototrophs		
	Hill reaction		
	Light and dark reactions		
	Component of photophosphorylation ,		
	Light reactions in oxygenic and Anoxygenic		
	bacteria		
	Carbon dioxide fixation in photosynthetic		
	bacteria		
	Dark reaction-Carbon dioxide fixation	03	
	Calvin Benson cycle		
	Reductive TCA		
	Inorganic Metabolism	03	
	Metabolism of Sulphur and nitrogen by		
	bacteria		
	Lithotrophy	02	
	'N' and 'S' oxidisers.	·-	
	Mechanism of oxidation.		
	Examples of other lithotrophs		

	Metabolism of carbohydrates-I	15 Lastance	
IV		Lectures	
	Catabolism of Carbohydrates	02	
	Breakdown of polysaccharides – glycogen, starch, cellulose.		
	Breakdown of oligosaccharides– lactose, maltose, sucrose, cellobiose.		
	Utilization of monosaccharides – fructose,		
	Galactose		
	Major pathways	08	
	Glycolysis (EMP)		
	HMP Pathway & Significance of the pathway		
	ED pathway		
	TCA cycle & Significance of the cycle		
	Anaplerotic reactions		
	Glyoxylate bypass		
	Incomplete TCA in anaerobic bacteria		
	Amphibolic role of EMP and TCA cycle	01	
	Methods to study metabolism	03	
	Mutation pulse labelling, radio respirometry		
	Energetics of Glycolysis, ED and TCA pathway – Balance sheet	01	
	only (No efficiency		
	calculation		
	Total	60	2.5

RECOMMENDED READING:

Essential reading:

- 1. Mathews, C.K., K.E. van Holde, D.R. Appling, S,J, Anthony-Cahill (2012) Biochemistry, 4thedn. Pearson
- 2. White, D., (1995), The Physiology and Biochemistry of Prokaryotes, 3rd edition, Oxford University Press
- 3. Stanier, R.Y., M.Doudoroff and E. A. Adelberg. General Microbiology, 5th edition, The Macmillan press Ltd
- 4. Cohen, G.N. (2011). Microbial Biochemistry. 2nd edition, Springer
- 5. Keith Wilson and John Walker Principles and Techniques of Biochemistry and Molecular Biology 7th edition 2010, Cambridge University press.

Supplementary Reading:

- 1. Rose, A.H. (1976) Chemical Microbiology, 3rdednButterworth-Heinemann
- 2. Cohen, G.N. (2011). Microbial Biochemistry. 2nd edition, Springer
- 3. Conn, E.E., P.K.Stumpf, G.Bruening and R.Y.Doi. 1987. Outlines of Biochemistry, 5th edition, 1987. John Wiley & Sons. New York.
- 4. Nelson, D. L. and M.M. Cox(2005), Lehninger, Principles of biochemistry. 4th edition, W. H. Freeman and Company
- 5. Zubay, G. L (1996), Biochemistry, 4th edition, Wm. C. Brown publishers
- 6. Gottschalk, G., (1985), Bacterial Metabolism, 2nd edition, Springer Verlag
- 7. Any other reference sources as recommended by the course instructor.

	B.Sc.			Semester: V	
Course: F	BIOPROCESS TEC		Course Code: USM	AMB504	
				Evaluation Sch	eme
Lecture (Hours p week)	per (Hours per Credit Assessment (CA)		End Semester Examinations (ESE) (Percentage)		
3.2	-	2.5	25	75	
equipment the indust includes the antibiotics This cours for the rec	t and its sterilization a ry for the production the principles and deso by vitamins, organic ac	aspects. It give n of different cribes the main cid and enzyme luates to enter i	industry with an appropriat	different types of fermer phasizes its process part industrial production o te level of understanding	nters used in arameters. It of beverages, g of the need
Course O After com CO1: App CO2: Des Microbiol CO3: Des CO4: Des types of m	pletion of the course, oly newer approaches cribe the mechanisms ogy cribe the design of bi	for screening s of strain improvements oreactors for donditions and teconmercial values	d be able to: various microbial metaboli rovement and their applicat lifferent applications and it echniques for producing an	ites tions in Industrial s process parameters	
Course O After com CO1: App CO2: Des Microbiol CO3: Des CO4: Des types of m	pletion of the course, oly newer approaches cribe the mechanisms ogy cribe the design of bi ign media, growth co icrobial products of o	for screening s of strain improvements oreactors for donditions and teconmercial values	d be able to: various microbial metaboli rovement and their applicat lifferent applications and it echniques for producing an	ites tions in Industrial s process parameters	No of
CO1: App CO2: Des Microbiol CO3: Des CO4: Des types of m Outline o	pletion of the course, oly newer approaches cribe the mechanisms ogy cribe the design of bi ign media, growth co icrobial products of c f Syllabus: (per sessing Description	for screening s of strain improved oreactors for d onditions and te commercial val	d be able to: various microbial metaboli rovement and their applicat lifferent applications and it echniques for producing an lue	ites tions in Industrial s process parameters d recovering different	-
Course O After com CO1: App CO2: Des Microbiol CO3: Des CO4: Des types of m Outline o	pletion of the course, oly newer approaches cribe the mechanisms ogy cribe the design of bi ign media, growth co icrobial products of c f Syllabus: (per sessing Description	for screening s of strain improved oreactors for d onditions and te commercial val	d be able to: various microbial metaboli rovement and their applicat lifferent applications and it echniques for producing an	ites tions in Industrial s process parameters d recovering different	No of
Course O After com CO1: App CO2: Des Microbiol CO3: Des CO4: Des types of m Outline o Module	pletion of the course, oly newer approaches cribe the mechanism ogy cribe the design of bi ign media, growth co icrobial products of o f Syllabus: (per sessi Description SCREENING ANI	for screening s of strain improvements oreactors for d onditions and te commercial val ion plan)	d be able to: various microbial metaboli rovement and their applicat lifferent applications and it echniques for producing an lue	ites tions in Industrial s process parameters d recovering different	No of Lectures

INDUSTRIAL FERMENTATIONS: PART-I

4

PRACTICALS

Total

15

60

60

Unit Module	B504: Detailed Syllabus Topic and Description SCREENING AND IMPROVEMENT OF INDUSTRIALLY	No. of Lectures 15 Lectures	No. of Credits 2.5
Ι	IMPORTANT STRAINS		
	Newer approaches for screening microbial metabolites	05	
	Strain Improvement of industrial microorganisms	10	
	Selection of induced mutants		
	Selection of mutants with altered permeability		
	Isolation of mutants not producing Feed Back Inhibitors or Feed		
	Back repressors (All Methods –Only one example)		
	Use of auxotrophs for production of primary metabolites. Example aspartate family.		
	Isolation of mutants that do not recognize the presence of		
	inhibitors and repressors with example(Gradient plate –Lysine)		
	Isolation of auxotrophic mutants example- (Penicillin-Davies		
	technique and Miniaturized tech)		
	Isolation of induced mutants for secondary metabolites.		
	Isolation of resistant mutants		
	Isolation of revertant mutants.	157 4	_
Module	UPSTREAM PROCESSING	15 Lectures	
II	Inoculum development	05	
	Sterilization	05	
	Introduction.	05	
	Media sterilization (Concept of nabla factor)		
	Design of batch sterilization.		
	Methods of batch sterilization- Design of continuous		
	sterilization, Methods– Heat exchanger continuous		
	injector flash cooling		
	Sterilization of fermenter, feeds, liquid waste.		
	Filter sterilization of media.		
	Air sterilization with Absolute filters.		
	Solid substrate fermentation	05	
	Definition		
	Types of substrates used		
	Characteristics of SSF		
	Types of fermenters used for SSF		
	Advantages and disadvantages of SSF		

	FERMENTER EQUIPMENT AND CONTROL	15 Lectures	
III	Design of fermenter	10	
	Scale Up		
	 Basic functions of fermenter,- Aseptic operation and containment, Body construction Aeration and agitation: Agitators, Stirrer glands and bearing, Mechanical seals (Names and Functions), Magnetic Drive, Baffles, Sparger: porous, orifice; nozzle; combined. Achievement and maintenance of aseptic condition. Valves / Steam traps – function in general and examples. Types of fermenters: Acetator, Cavitator, Tower fermenter, Cylindro conical, Air lift – outer loop / inner loop, Deep jet, Packed tower (generator), Bubble cap, Rotating disc. 		
	Instrumentation and Control of variables		
	Introduction Types of sensors Sensing and Control of- pH, temp, Dissolved oxygen, Flow measurement and control, Pressure, Inlet / Exit gas analysis, Foam sensing, Oxygen	05	
Module IV	INDUSTRIAL FERMENTATIONS: PART- I	15 Lectures	
	Beer –Ale and Lager Wine –Red and white and Champagne	03 03	
	Vinegar (Acetator and Generator)	03	
	Alcohol from molasses	02	
	Baker's yeast	02	
	Fungal amylase by solid substrate fermentation	02 02	
	Total	60	2.5

Program: B.S	Sc.			Semester: V	
Course: Practicals			Course: Practicals Course Code: USMA		
	Teaching Sche	me	Evaluation Scheme		
Practicals (Hours per week)	Tutorial (Hours per week)	Credit	ContinuousEnd Semester ExaminaAssessment (CA)(ESE)(Percentage)(Percentage)		
6.4	-	3	25	75	

PRACTICALS	No. of lectures 120
1. Isolation and study of Bioluminescent organisms	
2. Study of oxidative and fermentative metabolism	
3. Qualitative and Quantitative assay of Phosphatase	
4. Isolation and detection of Mitochondria	
5. Isolation and detection of chloroplast	
6. Estimation of Glucose in growth medium by GOD/POD	
7. Galactose transport in yeasts	
8. Ammonia and nitrite oxidation by chemolithotrophs	
9. Gradient plate technique for analogue resistant mutants.	
10. Alcohol tolerance of yeast.	
11. Sugar tolerance of yeast.	
12. Alcohol fermentation- Efficiency of fermentation	
13. Chemical estimation –Sugar by Cole's	
14. Chemical estimation – Alcohol	
15. Production of amylase- shake flask and solid substrate cultivation and detection.	

To develop scientific temper and interest by exposure through industrial visits and study/educational tours is recommended in each semester

RECOMMENDED READING:

ESSENTIAL READING:

- 1. Stanbury P. F., Whitaker A. and HaII S. J., (2016), "Principles of Fermentation Technology", 3rd Edition, Aditya Books Pvt. Ltd, New Delhi.
- 2. Casida L. E., "Industrial Microbiology" 2009 Reprint, New Age International(P) Ltd, Publishers, New Delhi
- 3. H. A. Modi, (2009). "Fermentation Technology" Vols 1 and 2, Pointer Publications, India
- 4. S.N.Jogdand (2012) Advances in Biotechnology, Himalaya publishing House.

SUPPLEMENTARY READING:

- 1. Peppler, H. J. and Perlman, D. (1979), "Microbial Technology". Vol 1 and 2, Academic Press
- 2. Crueger W. and Crueger A. (2000) "Biotechnology -"A Textbook of Industrial Microbiology", 2nd Edition, Panima Publishing Corporation, New Delhi.
- 3. Okafor Nakuda (2007) ''Modern Industrial Microbiology and Biotechnology'', Science Publications Enfield, NH, USA.
- 4. Prescott and Dunn's ''Industrial Microbiology''(1982) 4th Edition, McMillan Publishers
- 5. Manual of Industrial Microbiology and Biotechnology (2010) Richard H. Balts, Julian E Davies, Arnold L. Demain, ASM press.
- 6. Any other resources suggested by the course instructor.

Program	B.Sc.				Semester: VI	
	DNA TECHNOL VIROLOGY	OGY, BIOIN	FORMATICS AND		Course Code: USN	IAMB601
	Teaching Scheme				Evaluation Sche	me
Lectur (Hours p week)		Credit	Continuous Assessment (CA) (Percentage)	End Semester Examinations (1 (Percentage)		ions (ESE)
3.2	-	2.5	25		75	
Microbial practical involves a and DNA learner with bioinform Course C After com CO1: Des CO2: Exp CO3: Des transposit CO4: Har by perform CO5: Exp CO6: Des CO7: Cat CO8: Exp	tools for generating in understanding of repair. It gives an Il be exposed to de atics utcomes: pletion of the cours cribe the basic corrolain the characteri scribe different typ ion in prokaryotic ve acquired hands of ning agarose gel el plain the basic cond scribe the basic stru- egorize various me	ng, processing f Cell biology, n overview of etails of plasm rse, learners we neepts and tech stics of model es of plasmids cells. on skills of iso lectrophoresis. cepts of Bioinf acture, classifi ethods used for uses in cancer	nniques of recombinant organisms ; the nature of the trans lation of plasmid DNA formatics. cation, enumeration, cu r visualization of viruse and diseases caused by	DNA te posable from ba	genetic information ange and recombinat nodel organisms. Ad c and advanced virol- chnology elements and mechan cterial cells and its v	h. The course ion, mutation ditionally the ogy and basic hism of isualization
Outline o	f Syllabus: (per se	ession plan)				
Module	Description					No of Lectures
1	EXTRACHRON BIOINFORMA		DNA AND			15
2	RECOMBINAN	T DNA TEC	HNOLOGYAND ITS	APPLI	CATIONS	15
3	BASIC VIROL	OGY				15
4	ADVANCED V	IROLOGY				15
	Total					_
	Total					60

Unit	Topic and Description	No. of Lectures	No. of Credits
Module	EXTRACHROMOSOMAL DNA AND	15 Lectures	2.5
Ι	BIOINFORMATICS		
	Branches of Genetics	01	
	Transmission genetics	01	
	Molecular genetics		
	Population genetics		
	Quantitative genetics		
	Model Organisms	01	
	Characteristics of a model organism		
	Examples of model organisms used in		
	study		
	Examples of studies undertaken using		
	prokaryotic and eukaryotic model organisms		
	PCR - basic PCR and different types of PCR		
	(Reverse transcriptase PCR, Real time quantitative PCR)	02	
	Plasmids		
	Physical nature	04	
	Detection and isolation of plasmids		
	Plasmid incompatibility and Plasmid		
	curing		
	Cell to cell transfer of plasmids		
	Types of plasmids		
	Resistance Plasmids,		
	Plasmids encoding toxins and other		
	virulence characteristics		
	Col factor		

	Degradative plasmids	
	Transposable Elements in Prokaryotes	04
	Insertion sequences	
	Transposons	
	Types	
	Structure and properties	
	Mechanism of transposition	
	Transposon mutagenesis	
	Integrons	
	Bioinformatics	03
	Introduction	
	Definition, aims, tasks and applications of Bioinformatics.	
	Transcriptome, Metabolomics, Pharmacogenomics,	
	Phylogenetic analysis, Phylogenetic tree, Annotation,	
	Genomics, Proteomics,	
	Database, tools and their uses, Importance, Types and	
	classification of databases. Nucleic acid sequence databases-	
	EMBL, DDBJ, GenBank, GSDB, Ensembl and specialized	
	Genomic resources. Protein sequence databases-PIR, SWISS-	
	PROT, TrEMBL NRL-3D.Protein structure databases- SCOP,	
	CATH, PROSITE, PRINTS and BLOCKS. KEGG.	
Modulo	rDNA TECHNOLOGY AND ITS APPLICATIONS	15
	IDINA IECHINOLOGI AND II5 AFFLICATIONS	
I	Basic steps in Gene Cloning.	Lectures
	Cutting and joining DNA molecules	01
	Suturg and Johning DIA molecules	
	Restriction and modification systems, restriction endonucleases, DNA ligases	02

	Vectors	04
	Plasmids as cloning vectors. The plasmid vectors, pBR322	
	vector	
	Cloning genes into pBR322	
	Phage as cloning vectors, cloning genes into phage vector	
	Cosmids	
	Shuttle vectors	
	YAC	
	BAC	
	Methods of transformation	02
	Screening and selection methods for	02
	identification and isolation of recombinant cells	
	Applications of recombinant DNA technology: Site specific	03
	mutagenesis of DNA, Uses of DNA polymorphism, STRS and	
	VNTRS, DNA molecular testing for human genetic diseases	
	(Only RFLP), DNA typing, gene therapy, Genetic engineering	
	of plants and animals.	03
Module	BASIC VIROLOGY	15
III		Lectures
	Viral architecture-	04
	Capsid, viral genome and envelope	
	Structure of TMV, T4, Influenza virus,	
	HIV.	
	Viral classification	
	The viral replication cycle- attachment,	02
	penetration, uncoating, types of viral genome	04
	and their replication, assembly, maturation and	04
	release.	05
	Cultivation of viruses- cell culture techniques,	05
	embryonated egg, laboratory animals, Cell	
	culture methods: Equipment required for animal	
	cell culture, Isolation of animal tissue	
	cen culture, isolation of animal tissue	

	DVANCED VIROLOGY	15	
IV		Lectures	
Lif	e cycle of T4 phage, TMV, Influenza Virus	05	
	and HIV in detail		
	Visualization and enumeration of virus	03	
	particles		
	Measurement of infectious units		
	Plaque assay		
	Fluorescent focus assay		
	Infectious center assay		
	Transformation assay		
	Endpoint dilution assay.		
	Measurement of virus particles and their		
	components		
	Electron microscopy		
	Atomic force microscopy		
	Haemagglutination		
	Measurement of viral enzyme		
	activity.		
	Regulation of lytic and lysogenic pathway of	03	
	lambda phage		
	Role of viruses in cancer: Important	02	
	Definitions, characteristics of cancer cell, cancer		
	multi step process, Human DNA tumor viruses-		
	EBV, Kaposi's sarcoma virus, Hepatitis B and C		
	virus, Papilloma Virus		
	Prions and viroids	02	
	Total	60	2.5

RECOMMENDED READING

ESSENTIAL READING:

- 1. Benjamin A. Pierce (2008), "Genetics a conceptual approach", 3rd ed., W. H. Freeman and company.
- 2. M.Madigan, J.Martinko, J.Parkar, (2009), "Brock Biology of microorganisms", 12th ed., Pearson Education International.
- 3. Edward Wagner and Martinez Hewlett, (2005) "Basic Virology", 2nd edition, Blackwell Publishing
- 4. Arthur Lesk, (2009), "Introduction to Bioinformatics", 3rd Edition, Oxford University Press
- 5. Snustad, Simmons, "Principles of genetics", 3rdedn. John Wiley AND sons, Inc.

SUPPLEMENTARY READING:

- 1. Peter J. Russell (2006), "Genetics-A molecular approach", 2nd edition.
- 2. R. H. Tamarin, (2004), "Principles of genetics", Tata McGraw Hill.
- 3. Fairbanks and Anderson, (1999), "Genetics", Wadsworth Publishing Company.
- 4. Benjamin Lewin, (9th edition), "Genes IX", Jones and Bartlett publishers.
- 5. JD Watson, "Molecular biology of the gene", 5thedn.
- 6. Teri Shors, (2009), "Understanding viruses", Jones and Bartlett publishers.
- 7. Primrose and Twyman, (2001), "Principles of gene manipulation and genomics", 6thed, Blackwell Publishing
- 8. T. K. Attwood AND D. J. Parry-Smith, (2003), "Introduction to bioinformatics", Pearson education
- 9. Flint, Enquist, Racanillo and Skalka, "Principles of virology", 2ndedn. ASM press.
- 10. Any other reference sources recommended by the course instructor.

Program: B.Sc,				Semester: VI
Course: MEDICAL MICROBIOLOGY AND IMMUNOLOGY: PART-II			Course Code: USMAMB602	
Teaching Scheme				Evaluation Scheme
Lecture (Hours per week)	Tutorial (Hours per week)	Credit	Continuous Assessment (CA) (Percentage)	End Semester Examinations (SEE) (Percentage)
3.2	-	2.5	25	75

Learning Objectives:

This course will provide an in-depth exploration of the fields of medical microbiology and immunology that are inexorably linked with each other. The course encompasses the aetiology, transmission, pathogenesis, clinical manifestations, laboratory diagnosis, prophylaxis, and treatment of various diseases that are enlisted in the syllabus. It will also enable the students to appreciate the interplay between the virulence factors of pathogens and the host defense mechanisms.

Students of T.Y.B.Sc. Microbiology have had an introductory course on Immunology in S.Y.B.Sc. The present course encompasses efforts to understand how multicellular organisms have evolved to survive a variety of challenges to homeostasis, including infection by pathogens.

Course Outcomes:

After completion of the course, learners would be able to:

CO1: Identify some common infectious agents and the diseases that they cause.

CO2: Evaluate methods used for antimicrobial testing in the clinical microbiology lab

CO3: Describe the modes of action of representative antibiotics

CO4: Review the means by which resistance to antibiotics are acquired by pathogens.

CO5: Appraise the immunological response and how it is triggered and regulated

CO6: Explain the cellular and molecular aspects of lymphocyte activation

CO7: Define the cellular/molecular pathways of humoral/ cell-mediated adaptive responses

CO8: Describe the mechanisms of antigen-antibody reactions and their relevance in disease diagnosis

CO9: Explore strategies for vaccine development

Outline of Syllabus: (per session plan)

Module	Description	No of Lectures
1	CARDIOVASCULAR SYSTEM & STUDY OF A FEW INFECTIOUS DISEASES - III	15
2	CHEMOTHERAPY OF INFECTIOUS AGENTS	15
3	THE WORKING OF THE IMMUNE SYSTEM	15
4	ANTIGEN-ANTIBODY REACTIONS AND VACCINES	15
	Total	60

PRACTICALS 6	60
--------------	----

U nit	Topic and Description	No. of Lectures	No. of Credits
Module I	eSTUDY OF A FEW INFECTIOUS	15 Lectures	2.5
I	DISEASES - III		
	Cardiovascular system & systemic infections	03	
	Septicemia		
	Bacterimia		
	Toxemia		
	Tabulation to include bacterial, viral and		
	helminthic infections		
	Reproductive system & sexually		
	transmitted diseases	05	
	Syphilis		
	Gonorrhea		
	AIDS	03	
	CNS & its infections		
	meningococcal meningitis	04	
	tetanus		
	poliomyelitis		
	Tabulation of the remaining diseases		

Module	CHEMOTHERAPY OF INFECTIOUS AGENTS	15
II		Lectures
	Introduction to chemotherapeutic agents	02
	Attributes of an ideal chemotherapeutic agent and related definitions	
	Testing of antibiotics for bacterial	
	isolates by Kirby-Bauer method	
	Mode of action of antibiotics on:	09
	Cell wall (Beta-lactams- Penicillin and Cephalosporins, Carbapenems)	
	Cell Membrane (Polymyxin and	
	Imidazole)	
	Protein Synthesis (Streptomycin,	
	Tetracycline and Chloramphenicol)	
	Nucleic acid (Quinolones,	
	Nalidixic acid, Rifamyicn)	
	Enzyme inhibitors (Sulfa drugs,	
	Trimethoprim)	
	List of common antibiotics used for treating viral, fungal and	01
	parasitic diseases.	
	Mechanisms of drug resistance- Its	03
	evolution, pathways and origin	
Module	THE WORKING OF THE IMMUNE SYSTEM	15
III	MHC complex and MHC molecules	Lectures
	Structure of class I, and class II	03
	molecules; class III molecules	
	Peptide – MHC interaction	
	Cytokines	02
	Properties and functions	
	Cytokines secreted by T_{H1} and T_{H2} cells	0.5
	Humoral Response	05
	Induction of Humoral response,	
	Primary and secondary responses	
	Germinal centers and antigen induced B cell differentiation	
	Generation of plasma cells and memory cells	
	Cell mediated effector response	
	Generation and target destruction	05
	by Cytotoxic T cells.	
	Killing mechanism of NK cells.	
	Antibody dependent cell	
	cytotoxicity (ADCC)	

Module ANTIGEN- IV	ANTIBODY REACTIONS AND VACCINES	15 Lectures	
Prec Agg inhit Radi Enzy Imm	en-Antibody reactions ipitation lutination, passive agglutination agglutination bition ioimmunoassay (RIA) yme immunoassays (EIA) hunofluorescence, itern blot technique	07	
Type Use New Idea Rou Vace	es ve and passive immunization es of vaccines of adjuvants in vaccine vaccine strategies l vaccine te of vaccine administration cination schedule ures in vaccination	08	
Tota	al	60	2.5

Program: B.Sc.				Semester: VI		
Course: Practicals				Course Code: USMAMBP612		
Teaching Scheme			Evaluation Scheme			
Practicals (Hours per week)	Tutorial (Hours per week)	Credit	Continuous Assessment (CA) (Percentage)	End Semester Examinations (ESE) (Percentage)		
6.4	-	3	25	75		

PRACTICALS	No. of Lectures 120
1. Isolation of genomic DNA of E. coli and measurement of its concentration by	
UV-VIS spectrophotometry.	
2. Enrichment of coliphages, phage assay (pilot AND proper).	
3. Restriction digestion of lambda phage /any plasmid DNA (Demonstration)	
4. Amplification of DNA by PCR and confirmation of it by gel electrophoresis (Demonstration)	
5. Western Blot. [Demonstration]	
6. Bioinformatics practical	
a. On Line Practical	
b. Visiting NCBI and EMBL websites and list services available,	
software tools available and databases maintained	
c. Visiting AND exploring various databases mentioned in syllabus and	
d. Using BLAST and FASTA for sequence analysis	
e. Fish out homologs for given specific sequences (by teacher – decide	
sequence of some relevance to their syllabus and related to some	
biological problem e.g., evolution of a specific protein in bacteria,	
predicting function of unknown protein from a new organism based on	
its homology)	
f. Restriction analysis of given nucleotide sequence	
g. Pair-wise alignment and multiple alignment of a given protein sequences	
7. Animal cell culture [Demonstration]	
8. Acid fast staining of <i>M.leprae</i>	
9. Identification of Candida species using the germ tube test and growth on	
CHROM agar	
 Demonstration of malarial parasite in blood films (Demonstration) Selection and testing of antibiotics using the Kirby-Bauer method 	
12. Determination of MBC of an antibiotic.	
13. Blood grouping – Direct and Reverse typing	
14. Coomb's Direct test	
15. Determination of Isoagglutinin titer	
16. Demonstration experiments- Widal, VDRL	
-	

To develop scientific temper and interest by exposure through industrial visits and study/educational tours is recommended in each semester

RECOMMENDED READING:

ESSENTIAL READING:

1. S. Riedel, J. A. Hobden, S. Miller, S. A. Morse, T. A. Mietzner, B. Detrick, T. G. Mitchell, J. A. Sakanari, P. Hotez. R. Meija Jawetz, Melnick and Adelberg's Medical Microbiology 26thy Edition 2013 lange Publication.

2. Arti Kapil (Ed) Ananthnarayan and Panicker's Textbook of Microbiology 9th edition Orient Blackswan.

3. Brenda A. Wilson, Aligail A. Salyers, Dixie D. Whitt, Whitt, Malcolm, E. Winkler Bacterial Pathogenesis - A Molecular Approach 2nd Editionn 2002 ASM Press

4. Baron Samuel Medical Microbiology 4th Edition

5. Judith A Owen, Jenni Punt, Sharon A. Stranford, Patricia P Jones, Janis Kuby Immunology, 7th Edition 2013 W H Freeman and Company.

SUPPLEMENTARY READING:

1. S. Pathak and U. Palan Immunology: Essential and Fundamental 1st and 3rd edition Capital Publishing Company

2. Fahim Khan. The Elements of Immunology 1st Edition

3. Any other reference sources as recommended by the course instructor.

Program: B.	Sc.			Semester: VI	
Course: MICROBIAL BIOCHEMISTRY: PART-II		Course Code: USMAMB603			
Teaching Scheme		Evaluation Scheme			
Lecture (Hours per week)	Tutorial (Hours per week)	Credit	Continuous Assessment (CA) (Percentage)	End Semester Examinations (ESE) (Percentage)	
3.2	_	2.5	25	75	

Learning Objectives:

In semester V students learn utilization of carbohydrates via central metabolic pathways, microorganisms have ability to utilize carbohydrate by fermentation. This semester learner will learn various fermentation mechanism and formation of various fermentation end products by different groups of microorganisms. This knowledge will help the learners understand industrial fermentation products. Carbohydrates are important constituents of cell structures. In this semester learners will learn synthesis of capsule, cell wall which have carbohydrates as major components. In addition to the carbohydrates there are a large number of macromolecules such as lipids, proteins and nucleic acids. which are catabolized by the living cells. Cells also synthesize these macromolecules. With the basic understanding regarding these macromolecules' learner will learn mechanism of catabolism and synthesis of cellular macromolecules. To maintain cell homeostasis all cellular processes are regulated at various level. The learner must be made aware the mechanism of regulation at various level in the living cell. This will not only help in understanding the network of metabolism but also help the learners in process biotechnology.

Course Outcomes:

After completion of the course, learners would be able to:

CO1: Recall microbial physiology including metabolism

CO2: Describe different types of fermentative metabolism of carbohydrates and

will be able to apply this knowledge in process biotechnology

CO3: Illustrate synthesis of glucose from non-carbohydrate molecules in cell.

CO4: Elaborate upon biosynthesis of capsule and cell wall.

Outling of Syllaburg (nor sossion plan)

CO5: Discuss the metabolism of lipids, aliphatic hydrocarbons, proteins and nucleic acids.

CO6: Assess regulation of metabolism in bacteria at various levels.

Module	Description	No of Lectures
1	FERMENTATIVE PATHWAYS & ANABOLISM OF CARBOHYDRATES	15
2	LIPID METABOLISM & CATABOLISM OF HYDROCARBONS	15
3	METABOLISM OF PROTEINS AND NUCLEIC ACIDS	15
4	METABOLIC REGULATION	15
	Total	60

PRACTICALS	60
------------	----

U nit	Topic and Description	No. of hours	No. of Credits
Module	FERMENTATIVE PATHWAY& ANABOLISM OF	15	
Ι	CARBOHYDRATES	Lectures	
	Fermentative pathways	05	
	Lactic acid fermentation		
	Homofermentors		
	Heterofermentors		
	Bifidobacterium pathway (Schematic)		
	Alcohol fermentation		
	ED pathway in bacteria		
	EMP in yeasts		
	Other modes of fermentations in	05	
	microorganisms		
	Mixed acid		
	Butanediol		
	Butyric acid		
	Butanol-acetone		
	Propionic acid		
	Anabolism of Carbohydrates	05	
	General pattern of metabolism leading to		
	synthesis of a cell from Glucose		
	Gluconeogenesis in bacteria		
	Biosynthesis of capsule and cell wall		

Module II	LIPID METABOLISM & CATABOLISM OF HYDROCARBONS	15 Lectures	
	General introduction to Lipids	01	
	Lipids in bacteria		
	Lipid as cell reserve. (PHB granules)		
	Catabolism of Lipids	06	
	Oxidation of even number saturated		
	fatty acid - β oxidation pathway		
	Oxidation of old number of saturated		
	fatty acid		
	Oxidation of propionic acid		
	Energetics of β oxidation of Palmitic		
	acid		
	Degradation of PHB granules		
	Anabolism of Lipids	06	
	Biosynthesis of straight chain even		
	carbon saturated fatty acid (palmitic		
	acid)		
	Biosynthesis of unsaturated fatty acid		
	in bacteria		
	Biosynthesis of phosphoglycerides in		
	bacteria		
	Biosynthesis of PHB		
	Catabolism of aliphatic hydrocarbons	02	
	Oxidation of saturated aliphatic		
	hydrocarbon (n-alkane)- Omega oxidation		

Module III	METABOLISM OF PROTEINS AND	15 Lectures
	NUCLEIC ACIDS	
	Protein catabolism	05
	Enzymatic degradation of proteins	
	Metabolic fate of amino acids	
	Metabolism of single amino acids	
	Deamination reactions	
	Decarboxylation	
	Transamination	
	Fermentation of single amino acid	
	Fermentation of pair of amino	
	acids -Stickland reaction	
	Anabolism of Proteins	04
	Schematic representation of amino acid	
	families	
	Synthesis of amino acids of aspartate	
	family	
	Nucleic acid Catabolism	03
	Degradation of purine nucleotides in	
	microorganisms	
	Recycling of purine and pyrimidine	
	nucleotides by salvage pathway	
	Anabolism of Nucleic Acids	03
	Metabolic origin of atoms in purine	
	and pyrimidine ring.	
	Biosynthesis of pyrimidine	
	nucleotides.	
	Biosynthesis of purine nucleotides.	
	Formation of deoxyribonucleotides.	
	Synthesis of nucleotide diphosphates	
	and triphosphates	

Module IV	METABOLIC REGULATION	15 Lectures	
	Overview and major modes of regulation	01	
	Examples of cellular control mechanism acting at various levels of metabolism (tabulation only)		
	Regulation of gene expression (Transcription)	06	
	Introduction to operon model Common patterns of regulation of transcription -General concept of positive and negative regulation of operons Lac operon - Mechanism of regulation – Induction, Catabolite repression Trp operon - End Product Repression, Attenuation. Regulation of gene expression Multiple Sigma Factors Riboswitches		
	Regulation of enzyme activity (Post translational regulation)	04	
	End-Product Inhibition and Mechanism of End Product Inhibition in branched pathways with examples Isofunctional enzymes Concerted feedback inhibition Sequential feedback inhibition Cumulative Feedback inhibition Combined activation and inhibition Covalent modification of enzymes General examples Monocyclic cascade & interconvertable enzyme definition Glutamine synthetase system of <i>E.coli</i>		
	Regulation by proteolytic cleavage Regulation of EMP and TCA	01	
		01	
	Total	60 2.5	,

RECOMMENDED READING:

ESSENTIAL READING:

- 1. Stanier, R. Y., M. Doudoroff and E. A. Adelberg. General Microbiology, 5th edition, The Macmillan press Ltd
- 2. Conn, E.E., P. K. Stumpf, G. Bruening and R. Y. Doi. 1987. Outlines of Biochemistry, 5th edition, 1987. John Wiley & Sons. New York.
- 3. Salle, A.J. Fundamental Principles of Bacteriology, 7thedn McGraw Hill Book Co.
- 4. Madigan, M.T. and J.M. Martinko 2006. 11th edition, Brock Biology of Microorganisms. Pearson Prentice Hall.
- 5. Cohen, G.N. (2011). Microbial Biochemistry. 2ndedn, Springer

SUPPLEMENTARY READING:

- 1. White, D., (1995), The Physiology and Biochemistry of Prokaryotes, 3rd edition, Oxford University Press
- 2. Gottschalk, G., (1985), Bacterial Metabolism, 2nd edition, Springer Verlag
- 3. Nelson, D. L. and M.M. Cox (2005), Lehninger, Principles of biochemistry. 5th edition, W. H. Freeman and Company.
- 4. Zubay, G. L (1996), Principles of Biochemistry, Wm. C. Brown Publishers

Program: B.S	Sc.			Semester: VI
Course: APP	LIED AND IN	DUSTRIAL	MICROBIOLOG	Y Course Code: USMAMB604
	Teachin	g Scheme		Evaluation Scheme
Lecture (Hours per week)	Tutorial (Hours per week)	Credit	Continuous Assessment (CA) (Percentage)	End Semester Examinations (ESE) (Percentage)
3.2	-	2.5	25	75

Learning Objectives:

Bioprocess Technology course is designed to develop the learner's ability to study the techniques used in the different phases of industrial microbiology such as strain improvement, basic fermentation equipment and its sterilization aspects. It gives an in-depth focus of the different types of fermenters used in industry for production of different products, and also emphasizes its process parameters. It includes the principles and describes the main steps and processes in the industrial production of beverages, antibiotics, vitamins, organic acid and enzymes.

The learner is expected to learn the need for quality management and regulatory bodies as the products need to fulfill these requirements. Thus, this paper readies the learner to understand and apply the knowledge of fermentation technology and related products.

This course aims to enable graduates to enter industry with an appropriate level of understanding of the need for the requisite science and business aspects to make a viable product and enhance their entrepreneurial skills.

Course Outcomes:

After completion of the course, learners would be able to:

CO1: Explain the various steps involved in downstream processing and effluent treatment

CO2: Design an industrial process keeping in view various guidelines for product recovery

and disposal of industrial effluent

CO3: Appreciate the importance of carbon credits

CO4: Enlist the applications of enzymes in various fields

CO5: Design media, growth conditions and techniques for producing and recovering different types of

microbial products of commercial value

CO6: Categorize the different IPs

CO7: Outline the steps involved in patent application

CO8: Enlist the salient features of quality management and regulatory procedures

CO9: Describe the working of important instruments used in biochemical analysis

Outline of Syllabus: (per session plan)

Module	Description	No of Lectures
1	DOWNSTREAM PROCESSING AND ENVIRONMENTAL ASPECTS	15
2	INDUSTRIAL FERMENTATIONS – PART 2	15
3	QUALITY ASSURANCE AND REGULATORY PRACTICES	15

4	BIOINSTRUMENTATION	15
	Total	60
PRACTICALS		60

USMAM	IB604: Detailed Syllabus	1	- 1
Unit	Topic and Description	No. of hours	No. of Credits
Module I	DOWNSTREAM PROCESSING AND ENVIRONMENTAL ASPECTS	15 Lectures	
	Downstream processing	11	
	Recovery and Purification of fermentation products Introduction, Precipitation, Filtration - theory, filter-aids, batch filters(Plate and frame filters), continuous filters.(Rotary vacuum),Centrifugation: flocculating agent, range of centrifuges - Basket, tubular bowl. Cell disruption: Physico-chemical. Liquid – Liquid extraction, Solvent recovery Chromatography –Ion exchange and Adsorption Membrane processes – Ultrafiltration, reverse osmosis, liquid membranes Drying, Crystallization Whole broth processing	11	
	Environmental aspects Effluent treatment Introduction to carbon credits	04	
	INDUSTRIAL FERMENTATIONS : PART-2	15 Lectures	
II	Production of:		
	Penicillin and Semisynthetic Penicillin	03	
	Vitamin B12 from <i>Propionibacterium</i> and <i>Pseudomonas</i>	03	
	Glutamic Acid (direct)	02	
	Citric acid	02	
	Mushroom	02	
	Enzyme Technology Enzyme Immobilization methods, Applications in therapeutic uses, Analytical uses and Industrial uses	03	

Module III	QUALITY ASSURANCE AND REGULATORY PRACTICES	15 lectures	
	Intellectual Property Rights: Introduction to Intellectual Property Genesis of IPR - GATT, WTO, TRIPS, The World Intellectual Property Rights Organization (WIPO) Types of Intellectual Property – Patents, Copyright, Trademark, Trade secret Plant varieties protection act, Designs, Geographical Indications Indian Patent office site- http://www.ipindia.nic.in/	06	
	 QA,QC,GMP : Definitions- Manufacture, Quality, Quality Control, In-Process Control, Quality Assurance, Good Manufacturing Practices. Chemicals, Pharmaceuticals, Chemicals and Pharmaceutical production The five variables, In process Items, Finished Products, Labels and Labeling, Packaging materials Documentation,Regulations,Control of Microbial contamination during manufacture, Premises and contamination control ,Manufacture of sterile products,Clean and Aseptic Area Important publications related to QA Sterilization Control and SterilityAssurance: Bio-burden determinations Environmental monitoring Sterilization Monitors – Physical, Chemical and Biological indicators, Sterility Testing 	05 04	
Module IV	BIOINSTRUMENTATION Bioinstrumentation – Principles, working and applications of: Spectrophotometry (I. R) Atomic absorption (AAS) AND Atomic Emission (Flame photometry) Radioisotopes and autoradiography Microbiological Assays Mass Spectrometry ESR NMR	15 lectures	

Program: B.S	Sc.	Semester: VI		
Course: Practicals				Course Code: USMAMBP634
Teaching Scheme		Evaluation Scheme		
Practicals (Hours per week)	Tutorial (Hours per week)	Credit	Continuous Assessment (CA) (Percentage)	End Semester Examinations (ESE) (Percentage)
6.4	-	3	25	75

PRACTICALS	No. of Lectures 120
1. β-galactosidase assay	
2. To study catabolite repression by diauxic growth curve	
3. Study of Home and Heterofermentation	
4. Detection of organic acids by TLC	
5. Qualitative and Quantitative assay of Protease	
6. Qualitative and Quantitative assay of Lipase	
7. Study of breakdown of amino acids –decarboxylase and Deaminase activity of any one amino acid	
8. Bioassay of an antibiotic (Ampicillin / Penicillin)	
9. Bioassay of Cyanocobalamin.	
 Immobilization of yeast cells for invertase activity- making of beads, Determination of activity and count by haemocytometer. 	
11. Sterility testing of injectible or vaccine.	
12. Chemical estimation of Penicillin	

To develop scientific temper and interest by exposure through industrial visits and study/educational tours is recommended in each semester

RECOMMENDED READING:

ESSENTIAL READING:

- 1. Casida L. E., "Industrial Microbiology" 2009 Reprint, New Age International (P) Ltd, Publishers, New Delhi
- 2. Stanbury P. F., Whitaker A. and HaII--S. J., 1997, "Principles of Fermentation Technology", 2nd Edition, Aditya Books Pvt. Ltd, New Delhi.
- 3. H. A. Modi, 2009. "Fermentation Technology" Vol: 1 and 2, Pointer Publications, India
- 4. Wilson and Walker, 2010. "Principles and Techniques of Biochemistry and Molecular Biology" 7thedn. Cambridge University Press.

SUPPLEMENTARY READING:

- 1. Environmental degradation : issues and challenges by Shitole and Sable, Global research publication (2012)
- 2. Crueger W. and Crueger A. 2000 "Biotechnology -"A Textbook of Industrial Microbiology", 2nd Edition, Panima Publishing Corporation, New Delhi.
- 3. Prescott and Dunn's ''Industrial Microbiology''(1982) 4th Edition, McMillan Publishers
- 4. Peppler, H. J. and Perlman, D. (1979), "Microbial Technology". Vol 1 AND 2, Academic Press.
- 5. Any other reference sources as recommended by the course instructor.

Shri Vile ParleKelavaniMandal's MMITHIBAI COLLEGE OF ARTS, CHAUHAN INSTITUTE OF SCIENCE & AMRUTBEN JIVANLAL COLLEGE OF COMMERCE AND ECONOMICS (AUTONOMOUS)

NAAC Reaccredited 'A' grade, CGPA: 3.57 (February 2016), Granted under RUSA, FIST-DST & -Star College Scheme of DBT, Government of India, Best College(2016-17), University of Mumbai

Affiliated to the UNIVERSITY OF MUMBAI

Program: Bachelor of Science

Course: Microbiology- Applied Component

Semester V& VI

Choice Based Credit System (CBCS) with effect from the Academic year 2020-21

A.C. No. _____

wayour Hichtan Mambhar

Agenda No. Supplementary 4.6 (iii)

PROGRAMME SPECIFIC OUTCOMES (PSO'S)

On completion of the B.Sc, the learners should be enriched with knowledge and be able to-

- **PSO1:** Articulate and communicate in the specialized terminology pertaining to microbiology.
- **PSO2:** Define and explain the theories and practices of the various fields/ disciplines in microbiology.
- **PSO3:** Explain the technologies and methods commonly used in microbiology.
- **PSO4:** Acquire the requisite skills applicable to microbiological analysis.
- **PSO5:** Describe the genetic and ecological relationships between microorganisms.
- **PSO6:** Discuss the applications of microorganisms in the various areas of biotechnology.

Preamble

The grant of autonomy along with DBT star funding has provided a platform for designing a curriculum that is dynamic and meets the need of the hour. The inherent freedom under autonomy provides for a multisensory learning experience.

The syllabusis as per CreditBased Semester and Grading System(CBSGS) and continuous evaluation consisting of components of Internal Assessment and External Assessment. The changes introduced conform to the Learning Objectives.

A major advantage of receiving autonomy is freedom to design a need-based curriculum for the learners. An applied component was introduced at the T.Y.B.Sc. level with a view to enhance the skillsandfor the holistic development of the learner. Keeping this goal in view, the syllabus for 2020-21 has been redrafted to suit the specific requirements of the learners of Mithibai College, Autonomous.

Each semester (Semester V and VI) will consist of one theory and one practical course of 100 marks each.

The course is as follows:

Semester V: USMAACMB5: Concepts in Biotechnology

Semester VI: USMAACMB6: Applied Biotechnology

I profusely thank all the committee members for their efforts in drafting the syllabus.

N.B. - (i) The duration of each theory lecture will be of 48 minutes. A course consists of 4 modules. For each module the number of hours allotted are 15. The total number of lectures for each course will thus be 60.

(ii) There will be one practical per batch for each course. The duration of each practical will be 4 lectures. For practical component the value of one credit is equal to 30 learning hours.

(iii) Thus, in a week, a student will study 3.2 hours of theory and 3.2 hours of practicals.

Evaluation Pattern

The performance of the learner will be evaluated in two components. The first component will be a Continuous Assessment with a weightage of 25% of total marks per course. The second component will be a Semester end Examination with a weightage of 75% of the total marks per course. The allocation of marks for the Continuous Assessment and Semester end Examinations is as shown below:

a) Details of Continuous Assessment (CA)

25% of the total marks per course:

Continuous Assessment	Details	Marks
Component 1 (CA-1)	Assignment on topics related to but not included	15 marks
	in the course	
Component 2 (CA-2)	Class test based on the course content	10 marks

b) Details of Semester End Examination

75% of the total marks per course. Duration of examination will be two and half hours.

Question Number	Description	Marks	Total Marks
1	Subjective questions based on module 1	3 questions of 7 marks each to be attempted out of 4 questions	21
2	Subjective questions based on module 2	3 questions of 7 marks each to be attempted out of 4 questions	21
3	Subjective questions based on modules 3	3 questions of 7 marks each to be attempted out of 4 questions.	21
4	Objective questions based on modules 1 to 3	4 sub-questions of 3 marks each to be attempted out of 4 questions	12
		Total Marks	75

Jeeta Narayan

Dr. Meenakshi Vaidya Approved by Vice – Principal

Dr. Krutika Desai Approved by Principal

Page **4** of **14**

0	Program: B.Sc. (2020-21)				Semest	
Course: A	Course: Applied Component Concepts in Biotechn			ology Course Code: USMAACMB5		
Teaching Scheme		Evaluation Scheme				
Lecture (Hours p week)		Tutori al (Hour s per week)	Credit	Assessment and Evaluation(CAE) Examination		End Semester End Examinations (ESE) (Percentage)
2	4	N A	4 (Theory &practical sare 2 creditseach	25		75
with both informatio	n conceptual and particular the course involved	ractical tes an und	cools for gener lerstanding of to	ating, processin ols and techniqu	g and un es in biote	According biotechnological chnology. In addition, learners ntributing members of society.
CO1:List behind the CO2:App and biopes CO3:Be is bioremedia CO4:Deve	esame.	technique es to cher vill also b urray of a e study of become c	es used in biotec nically harmful be introduced to pplications of E biofuels which ontributing men	chnology while s fertilizers and pe Plant Tissue Cult nvironmental Bio have a massive in	sticides, w ture. otechnolog	-
	•					No of Hours
Module 1	DescriptionNo of HoursTools and techniques in Biotechnology – Part I15					15
2	Introduction to Plant and Agricultural Biotechnology 15					
3	Environmental Biotechnology 15					
4	Life skills – PartI 15				15	
	Total 60				60	
PRACTIC	CALS					

Module	Торіс	No. of Hours/Credits 60hrs/2.5credits
Module 1	Tools and techniques in Biotechnology – Part I	15 Lectures
	Electrophoresis: SDS-PAGE, Native PAGE and 2D gel electrophoresis. Agarose gel electrophoresis &Pulse Field Gel Electrophoresis (PFGE).	07
	PCR: Factors affecting PCR, Applications of PCR. Basic PCR and variants of PCR (Reverse Transcriptase PCR, Real Time PCR, Nested PCR, Inverse PCR and Hot start PCR).	08
Module 2	Introduction to Plant and Agricultural Biotechnology	15 Lectures
	Biofertilizers: Characteristics and applications for Bacterial, fungal & algal biofertilizers.	03
	Biopesticides: Biological control of plant pathogens, insects and weeds.	04
	Plant single cell, tissue, organ, meristem, callus and protoplast culture- regeneration of plants, plant breeding – recombinant and non-recombinant approaches and germ plasmbank.	08
Module 3	Environmental Biotechnology	15 Lectures
	Biologicals fuels: ethanol, methane and hydrogen production. Petroleum prospecting and Microbially Enhanced Oil Recovery (MEOR)	06
	Genetically modified organisms in environment.	01
	Bioremediation: Overview of the <i>in-situ &ex-situ</i> methods (should include biofiltration, bioaugmentation and vermicomposting). Bioremediation of xenobiotics, heavy metals, dyes, waste from paper and pulpindustry.	07
	Bioleaching.	01
Module 4	Life Skills – Part I	15 Lectures
	1. Mental well-being.	

	2. Managing accounts.	
	3. Failure management.	
	4. Effective communication & Presentation skills.	
	5. Team building and interpersonal skills.	
	6. Courtesy and Empathy.	
	7. Personality Development and Personal grooming.	
	8. Resisting and/or Managing peerpressure.	
	9. Creative thinking.	
	10. Positive attitude.	
	11. Motivational skills.	
	12. Analytical and logical thinking.	
	13. Listening skills.	
	14. Self-supervision.	
	15. Criticizing and praising.	
Т	otal	60

	Practical USMAACMBP5			
	Practical	Credit		
	(Hours per week)			
	4	2		
1	Isolation and cultivationof: a) Azotobacter b) Rhizobium c) Phosphatesolubilizers			
2	Preparation of biofertilizer: mass production and method of seed application			
3	Production of Biopesticides (Bacillus the	uringiensis).		
4	Vermicomposting/ visit to vermicompost	ing facility		
5	 Isolation of genomic DNA (bacterial /yea a) Measurement of DNA by UV-Vi b) Gel electrophoresis of DNA. 			
6	Amplification of DNA by PC (Demonstration).	R and confirmation by gel electrophoresis		
7	PAGE for protein.			

Essential Reading:

- 1. Bernard R.Glick and Jack J. Pasternak(2002).Molecular Biotechnology:Principles and Applications of recombinant DNA. 4thEdition.
- 2. B. D. Singh. Biotechnology. KalyaniPublishers.
- 3. S. N. Jogdand. Advances in Biotechnology. 2005. 5thEdition.
- 4. S. B. Primrose. Modern Biotechnology 1989. Blackwell ScientificPubl.
- 5. Primrose and others. Principles of Gene manipulation. 6thedition. 2004 BlackwellScience.
- 6. Aluizio Borem Fabricio R. Santos and David E. Bowen. Understanding Biotechnology. 2004 PearsonEducation.
- 7. James Watson and Others.Recombinant DNA.2001.Scientific AmericanBooks.
- 8. S. N Jogdand. Gene Biotechnology. 2008, Himalaya Pub.House.
- 9. Purohit, S. S. Biotechnology Fundamentals and applications. 4thedition, 2005. Agrobios(India).
- 10. Jogdand, S. N. Medical Biotechnology, 2008. Himalaya Pub. House(Ebrary)

Supplementary Reading:

- 1. Das, H.K. Textbook of Biotechnology, 2ndedition, 2005. Wiley Dreamtech India Pvt.Ltd.
- 2. R.C.Dubey.ATextbookofBiotechnology.2006S.ChandandCompanyLtd.

Any other reference sources as recommended by the course instructor.

To develop scientific temper and interest by exposure through industrial visits and study/educational tours is recommended in each semester

Program: B.Sc. (2020-21)				Semester:	VI
Course: Ap	plied Component – A	Course Code: USMAACMB6			
Teaching Scheme				Evaluation Scheme	
Lecture (Hours pe week)	Practical (Hours per week)	Tutorial (Hours per week)	Credit	Continu ous Assessm ent and Evaluati on(CAE) (Percent age)	End Semester End Examinations (ESE) (Percentage)
			4	25	75
2	4	NA	(Theory &practical are 2 credits each		
which is esse Course Out After comple CO1:List the summarize the CO2:Discuss CO3:Develop	ential for them to thriv comes: etion of the course, le e advanced tools and he concepts behind th s the legal, social and	ve both as in arners would techniques u esame. ethical aspe ng of finance	oosed to more advanced life dividuals as well as contribu d be able to: used in biotechnology while s ects involved in biotechnolog e along with his/her holistice	uting member simultaneousl	rs of society.
Module	Description				No of
1	Hours				
	Tools and techniques in Biotechnology – Part II 15				
2	Introduction to Animal Biotechnology 15				
3	Role of biotechnology in society15				15
4	Life skills – PartII 15				15
	Total				60
PRACTICA	LS				

Module 1	Tools and techniques in Biotechnology– Part II	15 Lectures
	DNA sequencing methods: Maxam & Gilbert, Chain termination and automatedsequencing.	03
	Probes: Significance and methods for probe synthesis and labeling.	05
	Blotting Techniques: Southern, Northern and Western blotting.	03
	In situ Hybridization and FISH.	02
	Microarray: Introduction.	02
Module 2	Introduction to Animal Biotechnology	15 Lectures
	Animal cell culture: Principles of mammalian cell culture. Establishment of cell lines (Continuous cell lines). Media and equipment for animal cellculture.	06
	Transfection methods, embryonic stem cell transfer, cloning livestock by nuclear transfer, <i>In vitro</i> fertilization and embryo transfer, targeted gene transfer, detection oftransgenes.	06
	Application of transgenic animals, animalbioreactors.	03
Module 3	Role of biotechnology in society	15 Lectures
	Social and ethical aspects of Biotechnology: Bioethics, and Bioterrorism. GMOs in the environment.	08
	Biotechnology in Medicine: <u>Disease Diagnosis</u> : monoclonal antibodies and detection of genetic diseases.	03
	<u>Disease treatment</u> : Products from non- recombinant and recombinant organisms, interferons, growth factors, monoclonal antibodies. artificial tissue / organ, gene	04

 6. Critical thinking. 7. Conflict resolution. 8. Managing emotions and coping withanger. 9. Pressba again development. 	
 Psycho-sociodevelopment. Self-awareness. Decisionmaking. Assertiveness. 	
13. Emergency situation response.14. Self-confidence and Assertiveness.15. Workplace skills.	
Total	60

	Practical USMAACMBP6		
	Practical	Credit	
	(Hours per week)		
	4	2	
1	Analysis DNA sequencing chromatogram: a) Sanger'smethod b) Maxam & Gilbert'smethod c) Automated sequencing method		
2	Western BlottingTechnique.		
3	Case studies for ethical issues in Biotechnology		
4	Animal cell culture (Demonstration).		
5	Visit to a Tissue Culturefacility.		
6	Visit to a biotechnology research institut	e	

Essential Readings:

- 1. *Bernard* R.Glick and Jack J. Pasternak(2002). Molecular Biotechnology: Principles and Applications of recombinant DNA. 4thEdition.
- 2. B. D. Singh. Biotechnology. Kalyani Publishers.
- 3. S. N. Jogdand. Advances in Biotechnology. 2005. 5thEdition.
- 4. S. B. Primrose. Modern Biotechnology 1989. Blackwell ScientificPubl.
- 5. Primrose and others. Principles of Gene manipulation. 6thedition. 2004 Blackwell Science.
- 6. Aluizio Borem, Fabricio R. Santos and David E.Bowen Understanding Biotechnology.2004 Pearson Education.
- 7. James Watson and Others.Recombinant DNA.2001. Scientific American Books.
- 8. S. N. Jogdand. Gene Biotechnology. 2008, Himalaya Pub.House.
- 9. Purohit, S. S. Biotechnology Fundamentals and applications. 4thedition, 2005. Agrobios (India).
- 10. Jogdand, S. N. Medical Biotechnology, 2008. Himalaya Pub. House (Ebrary).

Supplementary Readings:

- 1. Das, H.K. Textbook of Biotechnology, 2ndedition, 2005. Wiley Dreamtech India Pvt.Ltd.
- 2. R.C.Dubey. A Textbook of Biotechnology. 2006 S.Chand and Company Ltd.

Any other reference sources as recommended by the course instructor.

To develop scientific temper and interest by exposure through industrial visits and study/educational tours is recommended in each semester