

Shri Vile Parle Kelayani Mandal's MITIIIBAI COLLEGE OF ARTS, CHAUHAN INSTITUTE OF SCIENCE & AMRUTBEN JIVANLAL COLLEGE OF COMMERCE AND ECONOMICS (AUTONOMOUS)

NAAC Reaccredited 'A' grade, CGPA: 3.57, Granted under RUSA, FIST-DST & Star College Scheme of DBT, Government of India, Best College (2016-17), University of Mambai

> Affiliated to the UNIVERSITY OF MUMBAL

Program: B.Sc.- Statistics

S. Y. B. Sc.

Semester III & IV

Choice Based Credit System (CBCS) with effect from the Academic year 2022-23 (Revised)

A.C. No: 12. Agenda No: 4(X/V)

1 can

Baunut

PREAMBLE

In the first year, students were taught – methods of data representation and summarization, Correlation and regression which are the tools that are frequently used in statistical analysis. Further they are introduced to probability, the concept of random variables-discrete as well as continuous and different discrete probability distributions along with applications. Relevant problems on these topics will be included in practical course. Thus, student who takes up the subject of Statistics is prepared to learn the advanced studies in Statistics.

In the second year of under-graduation, the learner will be expected to study various probability distributions and their applications to real life situations. An important branch of Statistics, Sampling theory and Design of Experiments will be introduced, where sampling methods and designs used in agriculture and industry will be studied. Papers of applied Statistics, like Industrial Statistics will also be studied

The 3 courses of theory and practicals for Semester-III & Semester-IV respectively are compulsory to all students offering Statistics at second year.

The courses are as follows: -

Semester III :	USMAST301 : DISTRIBUTION THEORY I
	USMAST302 : SAMPLING THEORY
	USMAST303 : APPLIED STATISTICS 1: INDUSTRIAL STATISTICS
Semester IV :	USMAST401 : DISTRIBUTION THEORY II
	USMAST402 : ANALYSIS OF VARIANCE &
	DESIGN OF EXPERIMENTS

USMAST403 : APPLIED STATISTICS 2: (Vital Statistics, Simulation, Reliability)

I profusely thank all committee members for their efforts in drafting the syllabus.

N.B.-

- (i) The duration of each theory lecture will be of 1 hour. A course consists of 3 units. For each unit the number of hours allotted are 10. The total number of hours for each course will thus be 30.
- (ii) There will be one practical per batch for each course. The duration of each practical will be of 2 hours. For practical component the value of One Credit is equal to 30 learning hours.
- (iii) Thus in a week, a student will study 6 hours of theory and 6 hours of Practicals.

Evaluation Pattern for theory papers

The performance of the learner will be evaluated in two components. The first component will be a Continuous Assessment with a weightage of 25% of total marks per course. The second component will be a Semester End Examination with a weightage of 75% of the total marks per course. The allocation of marks for the Continuous Assessment and Semester End Examinations is as shown below:

a) Details of Continuous Assessment (CA)

25% of the total marks per course:

Continuous Assessment	Details	Marks
Component 1 (CA-1)	Test / Assignment	60%
Component 2 (CA-2)	Test / Assignment	40%

b) Details of Semester End Examination

75% of the total marks per course. Duration of examination will be two and half hours.

Question Number	Description	Marks / Sub Question	Total Marks
Q1 to Q3	Attempt Any Three sub questions out of Four sub questions.	7	21 Marks 21 x 3 = 63 Marks
Q4	Attempt Any three sub questions (out of Four sub questions)	4	12
	To	tal Marks	75

Evaluation Pattern for practical papers

in the Practical Exams, there will be 20% assessment for journal and laboratory work and 80% as term end component to be conducted as a semester end exam per course. For each course there will be one examiner per batch who will assess the practical examination answer books.

HOD

Signature Approved by Vice-Principal

Signature

Approved by Principal

Page 2 of 22

Program: B.Sc Statistics Semester : III					
Course: D	STRIBUTION THEORY I		Cour	rse Code: USMAST301	
	Teaching Scheme	Eval	uatior	n Scheme	
Lecture		Continuous Assess	mont	End Semester	
(Hours		and Evaluation (C	ΔE)	Examination (ESE)	
per	Credit	(Marks - 25)	AL)	(Marks-75	
week)		(WIIIINS 20)		in Question Paper)	
2	2 + 1 = 3	25%		75%	
Learni	ing Objectives:				
Unit 1					
1. To lear	n the definition of a moment-genera	ting function.			
2. To find	I the moment-generating function of	a binomial random va	ariable		
3. To lear	n how to use a moment-generating f	function to find the me	ean and	d variance of a random	
variabl	e.			1 1 11	
4. To lear	n how to use a moment-generating f	unction to identify whi	ich pro	bability mass function	
a rando	om variable X follows.				
5. To und	erstand the steps involved in each of	t the proofs in the less	on.		
6. 10 be a	able to apply the methods learned in	the lesson to new prot	olems.		
Unit 23	:	tion and isint much sh	:1:4-, 4		
	g use of joint probability mass func	tion and joint probab	anty a	lensity to calculate	
probab	indes.	n ioint nuchability dist			
2. Calcula	ate marginar and conditional pdf from	lations between rende	m	jus.	
To der	ive the probability distributions of tr	enations between rand	JIII vai	ladies	
Unit 3		distormed variables			
1 This co	•	totic methods in statist	tice		
2 Types	of convergence such as convergence	e in probability con	vergen	nce withprobability	
one and	d convergence in distribution are dis	cussed	vergen	lee wimprobability	
3. A versi	ion of the law of large numbers and	the Lindeberg central	limit	theorem are proved.	
Course O	utcomes:				
After com	poletion of the course, learners would	d be able to:			
(CO1: Re	emember)				
i) Recall de	finitions of probability function, den	sity function, cumulat	ive dis	stributionfunction and	
moment g	enerating function, and their inter-re	elationships			
ii)State p.m	.f. and p.d.f. of various standard dist	ributions and also the	ir distr	ibution function,	
skewness	and kurtosis.			,	
(CO2: U1	nderstand)				
i) Detern	nine and interpret independence and	conditional distribution	ons		
ii) Recall	well known distributions such as Be	rnoulli, binomial, Pois	son, g	eometric, uniform.	
iii)Unders	stand which distribution is to be appl	lied in different scenar	ios.		
(CO3: A)	oply)				
i) Use mo	i) Use moment generating function to determine distribution function and moments				
ii) Find di	stributions of functions of random v	ariables, including dis	tributi	ons ofmaximum and	

minimum observations

- iii) Identify and apply appropriate distribution in case of various real life problems.
- iv) Apply methods from algebra and calculus to derive the mean and variance for arange of probability distributions

(CO4: Analyse)

- i) Distinguish between the different discrete and continuous distributions.
- ii) The basics of asymptotic analysis in statistics and probability
- iii) Derive probability distributions relevant to functions of random variables

(CO5: Evaluate)

- i) Calculate moments and moment generating function
- ii) Calculate probabilities relevant to multivariate distributions, including marginal and conditional probabilities and the covariance of two random variables.

Outline of	Syllabus: (per session plan)	
Module	Description	No of hours
1	Generating functions.	10 Hours
2	Bivariate Distributions & Transformation of Variables	10 Hours
3	Convergence in probability and Limit theorems	10 Hours
	Total	30 hours
Module	DISTRIBUTION THEORY 1	No. of Hours/ Credits 30/2
1	Generating functions.	10
	 <u>Univariate Random Variables (Discrete and Continuous):</u> Moment Generating Function, Cumulant generating function-their important properties. Relationship between moments and cumulants and their uses. 	2
	 Characteristic Function- Its properties (without proof). 	1
	 Uniform, Bernoulli, Binomial, Poisson, Geometric, Negative Binomial & Hyper geometric distributions. 	2
	 The following aspects of the above distributions (wherever applicable) to be discussed: Moment Generating Function, Cumulant Generating Function, Additive property, Recurrence relation for central Moments, Skewness and Kurtosis (without proof), Limiting distributions. 	3
	Fitting of Distributions. Truncated Binomial and Truncated Poisson Distribution: Suitable illustrations, probability mass function, mean.	2
2	Bivariate Distributions & Transformation of Variables	10
	 Joint Probability mass function for Discrete random variables. Joint Probability density function for continuous random variables. Their properties. 	5

•	 Marginal and conditional Distributions. 					
•	 Independence of Random Variables. 					
	 Conditional Expectation & Variance. 					
	 Regression Function. Coefficient of Correlation. 					
	 Transformation of Random Variables and Jacobian of transformation 	2				
	with illustrations.					
	Definition and properties of Moment Generating Function (MGF) of	3				
	two random variables of discrete and continuous type.					
	Necessary and Sufficient condition for independence of two random					
	variables.					
3	Convergence in probability and Limit theorems	10				
3	 Convergence in probability and Limit theorems Limit laws: Convergence in probability, almost sure convergence. 	10 5				
3	 Convergence in probability and Limit theorems Limit laws: Convergence in probability, almost sure convergence. Chebyshev's inequality - Convergence in probability and in 	10 5				
3	 Convergence in probability and Limit theorems Limit laws: Convergence in probability, almost sure convergence. Chebyshev's inequality - Convergence in probability and in distribution 	10 5				
3	 Convergence in probability and Limit theorems Limit laws: Convergence in probability, almost sure convergence. Chebyshev's inequality - Convergence in probability and in distribution Convergence in distributions– Limit Laws Weak / Strong Law of 	10 5				
3	 Convergence in probability and Limit theorems Limit laws: Convergence in probability, almost sure convergence. Chebyshev's inequality - Convergence in probability and in distribution Convergence in distributions- Limit Laws Weak / Strong Law of Large Numbers 	10 5				
3	 Convergence in probability and Limit theorems Limit laws: Convergence in probability, almost sure convergence. Chebyshev's inequality - Convergence in probability and in distribution Convergence in distributions- Limit Laws Weak / Strong Law of Large Numbers Central limit theorem and its applications. 	10 5				
3	 Convergence in probability and Limit theorems Limit laws: Convergence in probability, almost sure convergence. Chebyshev's inequality - Convergence in probability and in distribution Convergence in distributions- Limit Laws Weak / Strong Law of Large Numbers Central limit theorem and its applications. Liapunov Theorem. 	<u>10</u> 5				
3	 Convergence in probability and Limit theorems Limit laws: Convergence in probability, almost sure convergence. Chebyshev's inequality - Convergence in probability and in distribution Convergence in distributions- Limit Laws Weak / Strong Law of Large Numbers Central limit theorem and its applications. Liapunov Theorem. DeMoivre - Laplace Limit Theorem. 	10 5 5				

- 1. S.C. Gupta, V.K. Kapoor, Fundamentals of Mathematical Statistics: 8th, Sultan Chand & Sons.
- 2. R.V.Hogg, A.T. Craig, Introduction to Mathematical Statistics: Collier McMillanPublishers

- 1. A. M. Mood, F.A. Graybill, D. C. Boyes, Introduction to the Theory of Statistics, 3rd Edition McGraw Hill Book Company
- 2. R.V.Hogg, E. A.Tannis, Probability and Statistical Inference, Collier McMillanPublishers
- 3. John E. Freund's I. Miller, M. Miller, Mathematical Statistics, 6th Edition, Pearson Education Inc.
- 4 P.G. Hoel, Introduction to Mathematical Statistics, 4th Edition, John Wiley & Sons Inc.
- 5. J. Medhi, Statistical Methods: An IntroductoryText: 2nd Edition; Wiley Eastern Ltd.
- 6. A.M. Goon, M.K. Gupta, B.DasGupta; An Outline of Statistical Theory Vol. 1: 3rd Edition; The World Press Pvt. Ltd.
- 7. Goon A.M., Gupta M.K.and Das Gupta B. (1986) : Fundamentals of Statistics, Vol. II, World Press, Calcutta.

Program: B.Sc Statistics	Semester : III					
Course: SAMPLING THEORY			Course Code:			
			USMAST302			
Teaching Sche	eme	Evalı	uation Scheme			
		Continuous Assessm	End Semester			
Lecture (Hours per week)	Credit	and Evaluation (CA	(ESE) Examination (ESE)			
		(Marks - 25)	(Marks-75			
2	2	250/	in Question Paper)			
2 Learning Objectives	Z	25%	/5%			
Learning Objectives:						
1 Define principal concents	about compling I	ists the stages of some	ling process			
2 The ideas of census surve	vs and sample surv	asis ine siages of samp.	ning process			
2. The liters of census surve	bys and sample surv	cys.				
4 Develop an understanding	npnng a about different sar	nnling methods				
5 Discuss the relative advat	tages & disadvanta	inpling methods	methods			
Unit 2:		iges of each sampling f	neurous			
To make the learner aware	of when to use strat	ified sampling.				
Unit 3:						
1. To make the learner aw	are of Ratio & Re	gression Methods of	Estimation and			
Systematic Sampling.		6				
2. To make the learner awar	e of the Statistical a	gencies functioning in	India.			
3. To avoid nonresponse bia	ses in estimates.	0 0				
Course Outcomes:						
After completion of the course,	learners would be	able to:				
(CO1: Remember)						
i) Define what is sampling and	l its concept.					
(CO2: Understand)						
i) Identify the advantages and	disadvantages of sa	mpling				
ii) Describe sampling termino	logies					
iii) which sampling technique	is to be applied in c	lifferent scenarios.				
(CO3: Apply)						
i) Decide when to conduct a st	ratified sampling m	ethod.				
ii) Decide when to conduct a c	luster sampling me	thod.				
iii)Decide when to conduct a s	ystematic sampling	method.				
iv) Apply all sampling method	iv) Apply all sampling methods in practical situation.					
(CO4: Analyse)						
i) Differentiate between probability sampling and non-probability sampling techniques.						
(UUS: Evaluate)	alastion mathe					
i) Determine sample size and s	selection method;	lta				
iii) Compute estimates from sti	autieu sample resu	lts.				
iii) Compute estimates from systematic seconda results						
iv) Compute estimates from systematic sample results.						

Outline of Syllabus: (per session plan)				
Module	Description	No of hours		
1	Sampling Concepts and Simple Random Sampling for Variables and Attributes.	10		
2	Stratified Random Sampling.	10		
3	Ratio and Regression methods. Concepts of Systematic, Cluster, Multiple Stage Sampling. Indian Statistical Agencies and their functions.	10		
	Total	30		
Module	SAMPLING THEORY	No. of Hours/		
		Credits 30/2		
1	Sampling Concepts and Simple random Sampling for Variables and Attributes	10		
	 Population, Population unit, Sample, Sample unit, Parameter, Statistic, Estimator,Bias, Unbiasedness, Mean square error & Standard error. Census survey, Sample Survey. Steps in conducting a sample survey withexamples on designing appropriate Questionnaire. Concepts of Sampling and Non-sampling errors. Concepts and methods of Probability and Non Probability sampling. Purposive Sampling. Quota sampling. Snowball sampling. 	2		
	 Simple Random Sampling: (SRS). Definition, Sampling with & without replacement (WR/WOR). 	2		
	Lottery method & use of Random numbers to select Simple random sample.	1		
	 Estimation of population mean & total. Expectation & Variance of the estimators, Unbiased estimator of variance of these estimators. (WR/WOR). 	2		
	 Estimation of population proportion. Expectation & Variance of the estimators, Unbiased estimator of variance of these estimators. (WR/WOR). 	2		
	Confidence interval for population mean/ proportion. (WR/WOR)	1		
	Estimation of Sample size based on a desired accuracy in case of SRS for variables & attributes. (WR/WOR)			
2	Stratified Random Sampling	10		
	 Need for Stratification of population with suitable examples. Definition of Stratified Sample. Advantages of stratified Sampling. 	2		
	Sestimation of population mean & total in case of Stratified Random	3		

I		Sampling (WOR within each strata). Expectation & Variance of the	
		unbiased estimators, Unbiased estimators of variances of these	
		estimators.	
		Proportional allocation, Optimum allocation with and without varying	3
		costs.	
		Comparison of Simple Random Sampling, Stratified Random Sampling using	2
		Proportional allocation & Neyman allocation.	
	3	Ratio And Regression methods. Concepts of Systematic, Cluster, Multiple	10
		Stage Sampling. Indian Statistical agencies and their functions	
I		 Ratio & Regression Methods of Estimation. 	1
		✤ Ratio Estimators for population Ratio, Mean & Total. Expectation &	2
		MSE of theEstimators. Estimators of MSE, Uses of Ratio Estimator.	
		✤ Regression Estimators for population Mean & Total. Expectation &	
		Variance of the Estimators assuming known value of regression	2
		coefficient 'b'.	
		✤ Estimation of 'b'. Resulting variance of the estimators. Uses of	
		regressionEstimator. Comparison of Ratio, Regression & mean per	2
		Unit estimators.	
		 Systematic Sampling: Concept and basic ideas of Cluster sampling, 	
		Two-stage sampling and Multi Stagesampling.	1
		NSSO, CSO and their functions. Concepts and methods of Probability and Non-	
		Probability Sampling.	2
I			

- 1. Cochran W.G (1977): Sampling Techniques, John Wiley and Sons, New York.
- 2. Parimal Mukhopadhyay,(1998), Theory and Methods of SurveySampling: Prentice Hall of India Pvt. Ltd.

- 1. Des Raj (2000): Sample Survey Theory Narosa Publishing House, NewDelhi.
- 2. Daroga Singh, F.S. Chaudhary: Theory and Analysis of Sample Survey Designs: Wiley EasternLtd. (1986)
- 3. Sukhtme P.V., Sukhatme B.V., Sukhatme S. and Asok C. (1984) :Sampling Theory of Surveys withApplications, Indian Societyof AgriculturalStatistics, NewDelhi
- 4. P.V. Sukhatme and B.V.Sukhatme. Sampling Theory of Surveys withApplications:3rd Edition; Iowa State University Press (1984)
- 5. Murthy M.N. (1967): Sampling Theory and Methods, Statistical PublishingSociety, Calcutta.
- 6. Sampath S. (2000) :Sampling Theory and Methods, Narosa Publishing House, NewDelhi.
- 7. Hansen M.H., Hurwitz W.N. and Madow W.G. (1975) :Sample Survey Method and Theory
- 8. Kish L (1965): Survey Sampling, John Wiley and Sons, New York.

Program: B.Sc Statistics	Sem	ester : III	
Course: Applied Statistics 1: Indus	Cou	rse Code: USMAST303	
Teaching Scheme	Ev	aluation Scheme	
Lecture (Hours per week)	Credit	Continuous Assessment and Evaluation (CAE (Marks - 25)	End Semester Examination (ESE) (Marks-75 in Question Paper)
2	25%	75%	

Learning Objectives:

Unit 1:

- 1. Understand Common and Special Variations
- 2. Construct and Interpret Control Charts P-chart X-bar and R charts

Unit 2:

- 1. Exhibit a personal familiarity with the concepts and practices of Acceptance Sampling
- 2. State one or more advantages and disadvantages of Acceptance Sampling, and curve
- 3. Six sigma limits

Unit 3:

- 1. Understand the role and application of PERT/CPM for project scheduling.
- 2. Learn how to define a project in terms of activities such that a network can be used to describe the project.
- 3. Know how to compute the critical path and the project completion time.
- 4. Know how to convert optimistic, most probable, and pessimistic time estimates into expected activity time estimates.
- 5. With uncertain activity times, be able to compute the probability of the projectbeing completed by a specific time.
- 6. Understand the concept and need for crashing.
- 7. Learn how to schedule and control project costs with PERT/Cost

Course Outcomes:

After completion of the course, learners would be able to:

(CO1:Remember)

i) Define the average outgoing quality of inspected lots.

(CO2:Understand)

- i) Explain the purpose of acceptance sampling.
- ii) Describe project management objective.
- iii) Describe the project life cycle

(CO3:Apply)

- i) Construct the appropriate Quality Control charts and critically discuss the role of such charts in monitoring a process.
- ii) Develop an appropriate quality assurance plan to assess the ability of the service tomeet its required national and international quality standard.
- iii) Draw network diagram of various activities.

(CO4:Analyse) i) Elucidate techniques and concepts of Statistical Quality Control, Quality Assurance, Performance Analysis and Multi stream process control. ii) Compare and contrast single and multiple sampling plans. (CO5: Evaluate) i) Assess the ability of a process to meet customer expectations. ii) Construct and use the operating characteristic curve. iii) Estimate the completion time of a project. **Outline of Syllabus: (per session plan)** Description Module No of Hours **Control Charts** 1 10 2 10 Acceptance Sampling 3 CPM and PERT 10 Total 30 No. of Hours/ Module **Applied Statistics 1: Industrial Statistics** Credits 30/2 1 **Control Charts** 10 Principles of control. Process quality control of attributes and variables. 1 7 ♦ (X, R), p, c, np charts, p-chart with variable sample size, their uses and applications. 2 Problems involving setting up standards for future use. 2 10 Acceptance Sampling Lot Acceptance Sampling Plans by Attributes: 3 Single Sampling Plans (without curtailment). ♦ OC function and OC curves. AQL, LTPD, ASN, ATI, AOQ, 2 Consumer's risk, Producer's risk. 2 Double Sampling Plan (without curtailment). ♦ OC function and OC curves, AOQ, ASN and ATI. 2 Introduction to Six sigma limits. 1 3 10 CPM and PERT ♦ Objective and Outline of the techniques. Diagrammatic 4 representation of activities in a project: Gantt Chart and Network Diagram. 4 Slack time and Float times. Determination of Critical path. Probability consideration in project scheduling. Project cost analysis, Updating. 2

- 1. S. C. Gupta and V.K.Kapoor, Fundamentals of Applied Statistics;3rd Edition; Sultan Chand and Sons (2001).
- 2. E.L. Grant. Statistical Quality Control: 2nd edition,McGraw Hill,1988.
- 3. S.D.Sharma., Operations Research: 11th edition, KedarNath Ram Nath & Company.

SUGGESTED READINGS:

- 1. Duncan., Quality Control and Industrial Statistics, 3rd edition D. Taraporewal Sons & company
- 2. Bertrand L. Hansen, (1973) Quality Control: Theory and Applications: (1973), Prentice Hall of India Pvt. Ltd.
- 3. I.V. Burr, Mardekkar, Quality Control: New York, 1976.
- 4. J K Sharma, (1989), Mathematical Models in Operations Research: Tata McGraw Hill Publishing Company Ltd.
- 5. Srinath. L.S. PERT and CPM, Principles and Applications:2nd Edition, East-west press Pvt. Ltd.
- 6. Kantiswaroop and Manmohan Gupta. Operations Research: 4th Edition; S Chand & Sons
- 7. H. A.Taha., Operations Research: Prentice Hall of India.
- 8. J. K. Sharma. Quantitative Techniques For Managerial Decisions:(2001), MacMillan
- 9. Maurice Sasieni, Arthur Yaspan and Lawrence Friedman, (1959), Operations Research: Methods and Problems: (1959), John Wiley & Sons.
- Richard Bronson. Schaum Series book in O.R. 2nd edition, Tata Mcgraw Hill Publishing Company Ltd.

Program: Bachelor of Science			Semester: III	
Course: Practical (Based on Modules USMAST301			Course Code:	
USMAST302 AND U			(SMAST303)	USMAST3123
Teaching Scheme			Evaluation Scheme	
Deve et	• I			End Semester
Pract.		C l'4	Continuous Assessment (CA)	Examinations (ESE)
(Lecture	es per	Credit	(Marks - 30)	(Marks- 40*3 = 120 in
wee	к)			Question Paper)
6		3	20%	80%
Outline of	Syllabus	: (per ses	sion plan)	
No.	Descrip	tion		
Based on I	Module U	JSMAST	301	
1	Moment	t Generati	ng functions	
2	Cumula	nt Genera	ting functions	
3	Discrete	Distribut	ions	
4	Fitting o	of Distribu	itions	
5	Bivariat	e Probabi	lity Distributions	
6	Univaria	ate Transf	ormations	
7	Bivariate Transformations			
8	Inequalities			
9	Modes of	of converg	gence and Law of Large numbers	
Based on I	Module U	JSMAST	302	
1	Simple Random Sampling (WR/WOR).			
2	Simple I	Random S	Sampling (Use of Random numbe	r Tables)
3	Simple I	Random S	Sampling (For Attributes)	
4	Simple I	Random S	Sampling (Sample Size Determinat	ion and Confidence Intervals)
5	Stratifie	d Randon	n Sampling 1	
6	Stratifie	d Randon	n Sampling 2	
7	Ratio M	ethod.		
8	Regress	ion Metho	od.	
Based on I	Module U	JSMAST	303	
1	Control	Charts fo	r Variables	
2	Control	Charts fo	r Attributes	
3	Single S	ampling	Plan	
4	Double	Sampling	Plan	
5	Gnatt Cl	harts & N	etworks	
6	CPM			
7	PERT			
8	Project (Cost Anal	ysis	
9	Updating			

Program: B.Sc St	atistics	Sem	ester : IV	
Course: : Distribu	tion Theory II	Cou	rse Code: USMAST401	
Tea	ching Scheme	Ev	aluation Scheme	
		Continuous	End Semester	
Lecture (Hours	Credit	Assessment and	Examination (ESE)	
per week)		Evaluation (CAE) (Marks-75	
		(Marks - 25)	in Question Paper)	
2	2	25% 75%		

Learning Objectives:

Unit 1:

To make the learner aware of

- 1. Continuous probability distributions
- 2. Uniform distribution
- 3. Normal distribution, Standard normal distribution, Lognormal distribution.
- 4. Exponential distribution. Gamma and Beta distributions
- 5. Fitting of distributions.

Unit 2:

To make the learner aware of

- 1. The use a chi square test to evaluate the fit of a hypothesized distribution.
- 2. How the difference between the shape of the t distribution and normal distribution is affected by the degrees of freedom.
- 3. Use of the t table to find the value of t to use in a confidence interval
- 4. Use the t calculator to find the value of t to use in a confidence interval

Unit 3:

To make the learner aware of definition of F-distribution Summarize the F-statistic, the F-test and the F-distribution.

Course Outcomes:

After completion of the course, learners would be able to:

(CO1:Remember)

i) Definition of the Chi Square distribution in terms of squared normal deviates

(CO2:Understand)

- i) Understand sampling distributions and application of chisquare and t distribution.
- ii) Understand sampling distributions and applications of the Fdistribution.
- iii) Identify the conditions which must be satisfied when using the chi-square test.

(CO3:Apply)

i) Apply Central limit theorem.

(CO4:Analyse)

i) Use of fitting of distribution.

ii) The difference between the shape of the t distribution and the normal distribution.

iii) Describe how the shape of the Chi Square distribution changes as its degrees offreedom increase.

(CO5:Evaluate)

i) Compute probability values for a continuous uniform probability distribution.

ii) Compute the expected value and variance for such a distribution.	
--	--

- iii) Compute probabilities using a normal probability distribution.
- iv) Compute probabilities using an exponential probability distribution.

Outline of Syllabus: (per session plan)				
Module	Description	No of Hours		
1	Standard Continuous Distributions	10		
2	Exact Sampling Distributions : Chi Square & Students t	10		
3	Exact Sampling Distributions: F, Interdependence of Normal, Chi- square, t, F distributions	10		
	Total	30		
Module	Distribution Theory II	No. of Hours/ Credits 30/2		
1	Standard Continuous Distributions	10		
	 Rectangular, Triangular, And Normal, Lognormal, Gamma (1 & 2 parameters), Beta (Type I and Type II). The following aspects of the above distributions (wherever applicable) to bediscussed: Mean, Median, Mode Mean absolute deviation & Standard deviation. Moment Generating Function, Additive property, 	8		
	 Cumulant Generating Function. Moments(up to order 4), Recurrence relation for central moments, Skewness and Kurtosis. Fitting of Distributions. Interrelation between the distributions. Distribution of linear function of independent Normal variables. Fitting of Normal Distribution. 	2		
2	Exact Sampling Distributions : Chi Square & Students t	10		
	 Cni-Square Distribution: Moment generating function, Cumulant generating function. Additive property, Distribution of the sum of squares of independent Standard Normal variables. Sampling distributions of sample mean and sample variance and their independence for a sample drawn from Normal distribution (without proof). Confidence interval for the variance of a Normal population. t-distribution: 	5		
	 Mean, Median, Mode & Standard deviation. Distribution of ratio of a Standard Normal variable to the square root of an independent Chi-square divided by its degrees of freedom. Asymptotic properties. Student's t. Confidence interval for: Mean of Normal population; Difference between means of two independent Normal populations havingthe 			

	same variance.	
		10
3	Exact Sampling Distributions: F, Interdependence of Normal, Chi-	10
	square, t, F distributions.	
	Mean, Mode & Standard deviation. Distribution of : Reciprocal of an	5
	F variate, Ratio of two independent Chi-squares divided by their	
	respective degrees of freedom.	
	Confidence interval for ratio of variances of two independent Normal	5
	populations. Interrelationship of F with: t-distribution, Chi-square	
	distribution & Normal distribution.	
	Fisher's Z- transformation and its application.	

- 1. S.C. Gupta, V.K. Kapoor; Fundamentals of MathematicalStatistics: 8th Edition;Sultan Chand & Sons.
- 2. A. M. Mood, F.A. Graybill, D. C. Boyes, Introduction to the theory of statistics: 3rd Edition; McGrawHill Book Company
- 3. R.V.Hogg, A.T. Craig; Introduction to Mathematical Statistics: Collier McMillanPublishers

- 1. R.V.Hogg, E. A.Tannis, Probability and Statistical Inference: Collier McMillanPublishers.
- 2. John E. Freund's I. Miller, M. Miller, Mathematical Statistics: 6th Edition; Pearson Education Inc.
- 3. P.G. Hoel, Introduction to Mathematical Statistics, 4th Edition, John Wiley &Sons Inc.
- 4. J. Medhi, Statistical Methods: An Introductory Text, 2nd Edition, Wiley Eastern Ltd.
- 5. A.M. Goon, M.K. Gupta, B.DasGupta, An Outline of Statistical Theory Vol. 1: 3rd Edition, The World Press Pvt. Ltd.
- 6. Goon A.M., Gupta M.K.and Das Gupta B. (1986), Fundamentals of Statistics, Vol.II, World Press, Calcutta.

Program: B.Sc Statistics			Semester : IV	
Course: Analysis Of Variance & Design Of Experiments			urse Code: USN	MAST402
Teaching Sche	Evaluation Scheme		me	
		Continuous	End Ser	mester
Lecture		Assessment and	Examinati	on (ESE)
(Hours per week)	Credit	Evaluation (CAI	E) (Mark	ks-75
		(Marks - 25)	in Questio	n Paper)
2	2	25%	759	%
Learning Objectives:				
To make the learner aware of				
1. Understand what between-	group and within-gro	up variability consi	st of and represe	ent.
2. Understand the role of betw	veen-group and withi	n-group variability	in testingdiffere	ences
between group means.				
3. Understand what 'ANOVA	' stands for, and why	Ι.		
4. Understand why, in testing	the difference betwe	en means, the infere	ential statisticis	called
the <i>F</i> -ratio.	• • • • • • •		.•	
5. Understand the characterist	ics of the theoretical	distribution of F-ra	t10S.	
0.				
Course Outcomes:		h1a 4a.		
After completion of the course,	, learners would be a	ble to:		
i) Remember assumptions of A	NOVA mothematics	al models		
(CO2:Understand)	inova, manematica	ai models.		
i) Understand concept of Ana	lysis of Variance (AN	NOVA)		
($CO3:A pply$)				
i) Apply ANOVA and design c	of experiments in diff	erent situation.		
(CO4:Analyse)				
i) Discuss a Statistical Test for	One-Way ANOVA a	and Two –Way AN	OVA	
(CO5:Evaluate)	5	5		
i) compute last square estimates of unknown parameters and their variances.				
Outline of Syllabus: (per session plan)				
Module Description No of hours				
1 ANOVA				10
2 Design Of Experime	ents, Completely Rai	ndomized design &	Randomized	10
Block Design.				
3 Latin Square Design	3Latin Square Design, Factorial Experiments.10			
Total 30				30

Module	Analysis Of Variance & Design Of Experiments				
Mouule	Analysis Of Variance & Design Of Experiments				
		30/2			
1	ANOVA	10			
	 Introduction, Uses, Cochran's Theorem (Statement only). 				
	 One-way classification with equal & unequal observations per class. 				
	Two-way classification with one observation per cell.				
	✤ Mathematical Model, Assumptions, Expectation of various sums of				
	squares, F-test, Analysis of variance table.				
	✤ Least square estimators of the parameters, Variance of the estimators,				
	Estimation of treatment contrasts, Standard Error and Confidence				
	limits forelementary treatment contrasts.				
2	Design Of Experiments, Completely Randomized design & Randomized	10			
	Block Design.				
	Design of Experiments:	4			
	 Concepts of Experiments, Experimental unit, Treatment, Yield, Block, 				
	Replicate, Experimental Error, Precision. Principles of Design of				
	Experiments: Replication, Randomization & Local Control.				
	 Efficiency of design D1 with respect to design D2. 				
	Choice of size, shape of plots & blocks in agricultural & nonagricultural				
	experiments.				
	Completely Randomized Design (CRD), Randomized Block Design (RBD):				
	Mathematical Model, Assumptions, Expectation of various sums of				
	squares, F-test, Analysis of variance table.				
	Least square estimators of the parameters, Variance of the estimators,				
	Estimation of treatment contrasts, Standard error and Confidence limits				
	forelementary treatment contrasts. Efficiency of RBD relative to a CRD.				
	Missing plot technique for one missing observation in case of CRD,				
	RBD.				
3	Latin Square Design, Factorial Experiments	10			
	Latin Square Design (LSD):	5			
	 Mathematical Model, Assumptions, Expectation of various sums of 				
	squares, F-test, Analysis of variance table. Least square estimators of				
	the parameters,				
	✤ Variance of the estimators, Estimation of treatment contrasts, Standard				
	error andConfidence limits for elementary treatment contrasts.				
	Efficiency of the design relative to RBD, CRD.	5			
	 Missing plot technique for one missing observation in case of LSD. 				
	Factorial Experiments.				
	Definition, Purpose & Advantages. 2 ² , 2 ³ Experiments. Calculation of				
	Main & interaction Effects. Yates' method. Analysis of 2^2 & 2^3 factorial				
	Experiments.				

- 1. S.C.Gupta and V.K.Kapoor, Fundamentals of Applied Statistics, 4th Edition, Sultan Chand and Sons(2001).
- 2. Douglas C Montgomery, Design and Analysis of Experiments, 6th Edition, John Wiley & Sons.

- 1 Das, M.N. and Giri J. (1986), Design and Analysis of Experiments, Springer Verlag.
- 2 Kempthorne O. (1965), The Design and Analysis of Experiments, Wiley Eastern.
- 3. Cochran W.G. and Cox Experimental Design, John Wiley and G.M. (1957) Sons.
- 4. Walter T Federer, Experimental Design, Theory and Application: Oxford & IBH Publishing Co. Pvt. Ltd.
- 5. B.J. Winer, Principles in Experimental Design: McGraw HillBook Company.

Program: B.Sc. Semester:				Semester: IV		
Course: APPLIED STATISTICS 2: (Vital Statistics, Cour			Course Code	: USMAST403		
Simulatio	on, Reliability)		Γ			
	Teaching Scheme			Evaluation Scheme		
Lecture (Hours per week) Credit		Credit	ContinuousSAssessment (CA)(I(Marks - 25)Qu		Semester End minations (SEE) Marks- 75 in uestion Paper)	
	2	2	25%		75%	
Learning	Objectives:					
1. The lea	rner will learn various measu	res of Mortality	y, Fertility.			
2. The lea	rner will learn the concept of	reliability, haz	ard function and i	ts derivation fo	or standard	
distribu	itions. Also derivation of relia	bility of series	and parallel syste	ems.		
3. To mak	the learner aware of necession	ty of simulation	on in real life and	its applications	. Also learn	
Monte	Carlo Technique of Simulatio	on.				
Course C	vulcomes:					
CO1. Lo	arner will able to perform cal	oulations of va	rious massuras of	Mortality For		
CO1. Le	a learner will able to compute	reliability ba	rous measures of	Mortanty, Per	utions Also	
rel	iability of series and parallel	systems			utions. Also	
$CO3^{\circ}$ Th	e learner will be able to gener	ate random sa	mple from various	s standard		
dis	stributions. Also, will able to u	use Monte Carl	o Technique of S	imulation in rea	al	
ex	amples.				**	
Outline o	f Syllabus: (per session plan	ı)				
Module	Description				No of Hours	
1	Vital Statistics				10	
2	Simulation 10				10	
3	Reliability				10	
	Total 30					
	I					
Module	e Vital Statistics, Simulation, Reliability No. of 30/2				No. of Hours/Credits 30/2	
1	Vital Statistics				10	
	 Introduction and use of V Methods of obtaining Vi 	Vital Statistics tal Statistics			2	
	 Measurement of populat Measures of Mortality: C (SDR), Age Specific Det 	ion, Rates and Crude Death Ra ath Rate (Age-	ratios of vital eve ate (CDR), Specif SDR), Infant Mor	nts. ic Death Rates tality Rate	2	

	(IMR) and Standardized Death Rates (Direct and Indirect methods of standardisation)	2			
	 Measures of Fertility: Crude Birth Rate (CBR), General Fertility Rate (GFR), Specific Fertility Rate (SFR), Age-Specific Fertility Rate (Age-SFR) & Total Fertility Rate (TFR). 				
	 Measurement of Population Growth : Crude Rate of Natural Increase and Pearle's Vital Index, Gross Reproduction Rate (GRR) and Net Reproduction Rate (NRR). 				
	 Concept of Stable and Stationary populations. Concept and determination of rate of increase in stable population. Logistic curve for Population growth: Method of Pearl and Reed, Method due to Rhodes. 				
2	SIMULATION	10			
	 Concept of simulation 	2			
	 Types of simulation 	2			
	 Random Numbers : Their properties and generation by using Mid- 				
	Square method and Multiplicative Congruential method.	3			
	 Sampling from probability distributions. Inverse transform method : 				
	i. Uniform distribution				
	ii. Exponential distribution				
	 Convolution method : 				
	i. Gamma distribution				
	ii. Normal distribution				
	 Box-Muller method : 				
	 Normal distribution Monte Carlo Technique of Simulation 				
	 Monte Carlo Technique of Simulation. Simulation techniques annlied to inventory and Quantum models 				
	Simulation techniques applied to inventory and Queuing models.				
3	RELIABILITY	10			
	 Concept of Reliability, Hazard-rate. 	3			
	 Expression of hazard function in terms of density function and 	3			
	reliability function.				
	 Expression of density function and reliability function in terms of hazard function 	3			
	 Definitions of increasing and decreasing failure rate. Mean Time to 				
	Failure (MTTF).	2			
	✤ Bath tub curve				
	 Reliability function, hazard function and nature of hazard function for 				
	following Failure time distributions:				
	• Exponential distribution				
	 Gamma distribution Weibull distribution 				
	 Weibull distribution Gumbel distribution 				
	 Two parameter exponential distribution 				
	 Reliability of system. Reliability of series and parallel system of 				
	independent components.				
	 Reliability of series and parallel system of independent components 				
	having exponential life distributions.				

- 1. Gupta S. C. &. Kapoor V. K. Fundamentals of Applied Statistics, 4th edition, Sultan Chand & Sons.
- 2. Sharma J. K. Operations Research Theory and Application, 3rd edition Macmillan India Ltd.
- 3. Barlow R.E. and Prochan Frank Statistical Theory of Reliability and Life Testing Reprint, 1st edition, Holt, Reinhart and Winston.

Reference Books

- 1. Spiegel M.R. Theory and Problems of Statistics, 4th edition, Schaum's Outline Series Tata McGraw Hill
- 2. Taha Hamdy A. Operations Research : 8th edition Prentice Hall of India Pvt. Ltd
- 3. Vora N. D. Quantitative Techniques in Management, 3rd edition, McGraw Hill Companies.

Program: Bachelor of Science			Semester: IV	
Course: Practical (Based on Modules USMAST401			Course Code:	
USMAST402 AND U		02 AND U	JSMAST403)	USMAST4123
Teaching Scheme			Evaluation Scheme	
				End Semester
Practical		Credit	Continuous Assessment (CA)	Examinations (ESE)
(Lectur	es per	Creuit	(Marks - 30)	(Marks- 40*3 = 120 in
wee	K)			Question Paper)
6		3	20%	80%
Outline of	Syllabus	s: (per ses	sion plan)	
No.	Descrip	tion		
Based on I	Module U	JSMAST	401	
1	Uniform	n and Tria	ngular Distribution	
2	Exponer	ntial Distr	ibution	
3	Gamma	and beta	Distributions	
4	Normal	Distributi	on	
5	Fitting c	of Continu	ous Distributions	
6	Chi-square distribution			
7	t – Distribution			
8	F- distribution			
9	Fishers Z transformation			
Based on I	Module U	JSMAST	402	
1	One Wa	y ANOV	A.	
2	Two Wa	Two Way ANOVA.		
3	Completely Randomized Design.			
4	Random	nized Bloc	ek Design.	
5	Latin Sc	uare Des	ign.	
6	Missing Plot Technique.			
7	Factoria	l Experin	nents 1	
8	Factorial Experiments 2			
Based on Module USMAST403				
1	Vital Sta	atistics 1		
2	Vital Sta	atistics 2		
3	Simulat	ion 1		
4	Simulat	ion 2		
5	Reliability 1			
6	Reliabil	Reliability 2		