

Shri Vile Parle Kelavani Mandal's MITHIBAI COLLEGE OF ARTS, CHAUHAN INSTITUTE OF SCIENCE & AMRUTBEN JIVANLAL COLLEGE OF COMMERCE AND ECONOMICS (AUTONOMOUS)

NAAC Reaccredited 'A' grade, CGPA: 3.57 (February 2016), Granted under RUSA, FIST-DST & -Star College Scheme of DBT, Government of India Best College (2016-17), University of Mumbai

Affiliated to the **UNIVERSITY OF MUMBAI**

Program: S.Y. B.Sc.

Course: CHEMISTRY

Semester-III

Choice Based Credit System (CBCS) with effect from the Academic year

2018-2019

PROGRAMME SPECIFIC OUTCOMES (PSO'S)

On completion of the B.Sc.- Chemistry the learners should be enriched with knowledge and be able to-

PROGRAMME SPECIFIC OUTCOMES (PSO'S)

On completion of the B.Sc Chemistry the learners should be enriched with knowledge and be able to-

- PSO1: To have sound knowledge about the fundamentals and applications of various chemical and scientific theories.
- PSO2: To introduce the different branches of chemistry like analytical, organic, inorganic, physical, environmental, polymer and biochemistry etc.
- PSO3: To explain nomenclature, stereochemistry, structures, reactivity, chemical formulae, and mechanism of the chemical reactions.
- PSO4: To apply appropriate techniques for the qualitative and quantitative analysis of chemicals in laboratories and in industries.
- PSO5: To develop better understanding of good laboratory practices and safety.
- PSO6: To develop research oriented skills, analytical skills and problem solving skills requiring application of chemical principles.
- PSO7: To recognize causes of environmental pollution, environmental pollution act and the methods for environmental pollution control.

Preamble

The well-organized curriculum including basic as well as advanced concepts in chemistry from first year to third year shall inspire the students for pursuing higher studies in chemistry and for becoming an entrepreneur and also enable students to get employed in the Research Institutes, Industries, Educational Institutes and in the various concerning departments of State and Central Government based on subject chemistry.

Evaluation Pattern

The performance of the learner will be evaluated in two components. The first component will be a Continuous Assessment with a weightage of 25% of total marks per course. The second component will be a Semester end Examination with a weightage of 75% of the total marks per course. The allocation of marks for the Continuous Assessment and Semester end Examinations is as shown below:

a) Details of Continuous Assessment (CA)

25% of the total marks per course:

Continuous Assessment	Details	Marks
Component 1 (CA-1)	TEST	15 marks
Component 2 (CA-2)	ASSIGENMENT	10 marks

b) Details of Semester End Examination

75% of the total marks per course. Duration of examination will be two and half hours.

Question Number	Description	Marks	Total Marks
Q.1	Attempt any four of the following	5 marks each	20
Q.2	Attempt any four of the following	5 marks each	20
Q.3	Attempt any four of the following	5 marks each	20
Q.4	Attempt any five of the following	3 marks each	15
		Total Marks	75

Signature

Signature

Signature

HOD

Approved by Vice – Principal

Approved by Principal

-	: SY B.Sc. (2018-19)				ester: III	
Course:	Physical Chemistry	7		Course Code: USMACH301		
	Teaching So	cheme		Eval	uation Scheme	
Lectur (Hours p week)		Tutori al (Hours per week)	Credit	Continuous Assessment (CA) (Marks - 25)	Semester End Examinations (SEE) (Marks- 75 in Question Paper)	
3	3 g Objectives:	NIL	2+1	25	75	
4. To 5. To Course C After com CO1: un CO2: un CO3: un CO4: un	b acquaint learner abo Dutcomes: npletion of the course inderstand the importanderstand the concept inderstand ideal and no	the basic c out the con , learners of concept of conduc on-ideal sc ncept of p	would be able to of chemical the tance and factor	ocesses of electrochemist on and solvent extraction to: ermodynamics and its d ors affecting it and Kohli	ifferent laws. rausch's law and its applications ess and its different types.	
Module	Description				No of Hours	
1	1.1 Chemical Thern 1.2 Electrochemistr		es-II,		15L	
2	2.1 Chemical Kineti2.2 Phase Equilibria				15L	
3	3.1 Physical Proper	ties of Liq	uids-I		15L	
	Total				45L	
PRACTI						

Module	Description	No of Hours
1	 1.1Chemical Thermodynamics-II (7L) 1.1.1 Free Energy Functions: Helmholtz Free Energy, Gibb's Free Energy, Variation of Gibb's free energy with Pressure and Temperature, Gibbs- Helmholtz equation. (Numericals expected). 1.1.2 Thermodynamics of Open System: Partial Molal Properties, Chemical Potential and its variation with Pressure and Temperature, Gibb's Duhem equation. (Numericals expected). 1.1.3 Concept of Fugacity and Activity. 1.1.4 Chemical Equilibrium and Equilibrium Constant: Equilibrium constant, Kp and Kc and their inter-relation, van't Hoff reaction isotherm, van't Hoff reaction isochore. (Numericals expected). 1.2.1 Conductance: Equivalent, Specific, Molar conductance, Variation of molar conductance with dilution. (Numericals expected). 1.2.2 Mobility of ions – Kohlrausch's law, Application of Kohlrausch's law-determination of i) degree of dissociation ii) Solubility of sparingly soluble salt. iii) Ionic product of water. (Numericals expected). 1.2.3 Arrhenius theory of electrolytic dissociation and its limitations 1.2.4 Transference number and its experimental determination using moving boundary method. Factors affecting transport number.(Numericals expected). 	15L
2	 2.1Chemical Kinetics –II (4L) Types of Complex Chemical reactions. Reversible or opposing, consecutive and parallel reactions. (No derivations, only examples expected) Effect of temperature on rate of reaction, Arrhenius equation, Concept of energy of activation (Ea). (Numericals expected). 2.2 Phase Equilibria-I(11L) 2.2.1 Terms involved, components and degrees of freedom of a system, Gibbs Phase Rule.(Numericals expected). 2.2.2 Raoult's Law, Ideal and Non ideal Solutions (Positive and Negative Partially Miscible Liquids: Partially Miscible Liquids with Upper Critical Solution Temperature (Example: Phenol-Water System), Partially Miscible Liquids with Lower Critical Solution Temperature (Example: Triethylamine-Water System), Partially Miscible Liquids with Upper and Lower Critical Solution Temperature (Example: Nicotine-Water System). 2.2.4Fractional distillation,Azeotropic mixture, Steam Distillation, Nernst distribution law and its applications. (Numericals expected).	15L
3	 Physical Properties in Liquids-I 3.1 Conductometry: Introduction, Principle, Instrumentation, Methods of determination of conductance.Conductometric titrations. 3.2 pH metry: Introduction, Principle, Instrumentation, Applications. 3.3Polarimetry: Introduction, Principle, Instrumentation, Methods of determination of angle of polarisation, Applications. 3.4 Refractometry: Introduction, Principle, Instrumentation, Applications. 	15L
	Total	45L

To develop scientific temper and interest by exposure through industrial visits and study/educational tours is recommended in each semester

PRACTICAL I (If applicable)

PR	ACTICALS
1	To study reaction between potassium persulphate and potassium iodide kinetically and hence to determine order of reaction.
2	To verify Ostwald's dilution law conductometrically.
3	To determine dissociation constant of weak acid by incomplete titration method using pH meter.
4	To determine specific rotation of glucose solution using polarimeter.
5	Determine the refractance of methyl alcohol/ acetone/ chloroform.
6	Determination of the amount of Strong acid in the given solution by titration with strong base using Conductometry.

Suggested Readings

Reference Books:

- 1. Atkins P.W. and Paula J.de, Atkin's Physical Chemistry, 10th Ed., Oxford University 12 Press, 2014.
- 2. Ball D.W., Physical Chemistry, Thomson Press, India, 2007.
- 3. Castellan G.W., Physical Chemistry, 4th Ed., Narosa, 2004.
- 4. Mortimer R.G., Physical Chemistry, 3rd Ed., Elsevier: NOIDA, UP (2009).
- 5. Engel T. and Reid P., Physical Chemistry, 3rd Ed., Pearson (2013).
- 6. Peter A. and Paula J. de, Physical Chemistry, 10th Ed., Oxford University Press (2014).
- 7. McQuarrie D.A. and Simon J.D., Molecular Thermodynamics, Viva Books Pvt. Ltd., New Delhi (2004).
- 8. Levine I.N., Physical Chemistry, 6th Ed., Tata Mc Graw Hill (2010).
- 9. K.L. Kapoor, A Textbook of Physical Chemistry, Macmillan (2000).
- 10. ArunBahl, B. S. Bahl and G. D. Tuli, Essential of Physical Chemistry, S. Chand Publication (2015).
- Puri, Sharma and Pathania, Element of Physical Chemistry, Vishal Publication, 46th Ed., (2013)

Program	: SY B.Sc. (2018-19))		S	emester	r: III
Course: I	norganic Chemist	ry			Course	Code: USMACH302
	Teaching So	cheme		E	valuati	ion Scheme
Lecture (Hours pe week)	-	Tutori al (Hours per week)	Credit	Continuous Assessment (C. (Marks - 25)	,	Semester End Examinations (SEE) (Marks- 75 in Question Paper)
3	3 Objectives:	NIL	2+1	25		75
Course O After com CO1: ex CO2: ide CO3: us CO4: ex pro CO5: de	pletion of the course plain formation of be entify geometry and a e gravimetric analysi	e, learners wo onds betwe structures of s effective yed in bull processes f	would be able t en two atoms of co-ordination ly for quantitat k manufacturin	o: with the theories of c n compounds with pr ive analysis. ng of sulfuric acid a	hemica coper stand	l bonding. ereochemistry. monia, and factors affecting
Module	Description					No of Hours
1	Chemical Bonding					15L
2	Chemistry of co-ord	ination con	npounds			15L
3	Industrial Inorganic	Chemistry				15L
	Total					45L
PRACTIO	CALS					

Module	Description	No of Hours
1	 Chemical Bonding 1.1 Directional Bonding: Orbital approach (5L) 1.1.1 Covalent Bonding The Valence Bond Theory- Introduction and basic tenets 1.1.2 Interaction between two hydrogen atoms and the Potential energy diagram of the resultant system 1.1.3 Corrections applied to the system of two hydrogen atoms- Formation of H2 1.1.4 Homonuclear diatomic molecules from He2 to Ne2 1.1.5 Resonance and the concept of Formal Charge; Rules for Resonance or Canonical structures. 1.1.6 Bonding in Polyatomic Species: The role of Hybridization. And types of hybrid orbitals-<i>sp</i>, <i>sp²</i>, <i>sp³</i>, <i>sp³d</i>, <i>sp²d² and sp² d sp³d²</i> 1.1.7 Equivalent and Non-Equivalent hybrid orbitals 1.1.8 Contribution of a given atomic orbital to the hybrid orbitals (with reference to <i>sp³</i> hybridisation as in CH4, NH3 and H2O and series like NH3, PH3, AsH3, BiH3) 1.2 Molecular Orbital Theory (6L) 1.2.1 Comparing Atomic Orbitals and Molecular Orbitals. 1.2.2 Linear combination of atomic orbitals. to give moleculer orbitals LCAO-MO approach for diatomic homonuclear molecules). 1.2.3 Wave mechanical treatment for molecular orbitals (H2⁺ and H2) 1.2.4 Molecular orbital Theory and Bond Order and magnetic property: with reference to O2,O2⁺ O2⁻,O2² (Problems and numerical problems expected wherever possible) 1.3 Inorganic Polymers (4L) 1.3.1 Introduction 1.3.2 Classification, Preparation and Properties Applications of silicones and borazinesreference to O2,O2⁺ O2⁻,O2²⁻ 	15L
2	 2.1 Chemistry of co-ordination compounds (8L) Distinction between double salts and co-ordination compounds Experimental evidences of co-ordinate bond formation Terms involved in co-ordination compounds; IUPAC nomenclature Werner's theory of co-ordination compounds; Effective atomic number rule Isomerism in co-ordination compounds - Ionization isomerism; - Hydrate isomerism; - Linkage isomerism; - Co-ordination isomerism; - Stereoisomerism (geometrical and optical isomerism with special reference to co-ordination number 4 and 6) Applications of co-ordination compounds 2.2 Gravimetric Analysis (7L) 2.2.1 Definition and types of gravimetric analysis 2.2.2 Precipitation Gravimetry with respect to theory and practise: Solubility consideration, common ion effect, diverse ion effect, pH, temperature and nature of solubility 2.2.3 Treatment of precipitates in gravimetry 	15L

	Digestion, Filtration and Washing, Drying and Ignition 2.2.4 Use of organic reagents in gravimetric analysis.	
3	Industrial Inorganic Chemistry	15L
	3.1 Physico-Chemical Principles (6L)	
	3.1.1 Criteria for spontaneity of chemical reactions	
	3.1.2 Electrolysis	
	3.1.3 Effect of catalyst	
	3.1.4 General Principles of metallurgy	
	3.2 Manufacture of Bulk chemicals (4L)	
	3.2.1 Sulfuric acid	
	3.2.2 Ammonia	
	3.3 Extraction and Purification of metals (5L)	
	3.3.1 Copper by pyrometallurgy	
	3.3.2 Silver by hydrometallurgy	
	3.3.3 Aluminum by electrometallurgy.	
	Total	45L

To develop scientific temper and interest by exposure through industrial visits and study/educational tours is recommended in each semester

PRACTICAL I

(If applicable)

1	Identification of an inorganic compound involving qualitative and quantitative analysis (minimum four compounds)
2	Volumetric Analysis

- 1. Determination of total alkalinity of water sample using double indicators.
- 2. Redox titration using internal indicator (Fe vs $K_2Cr_2O_7$)

Suggested Readings

Reference Books:

1. B. R. Puri, L. R. Sharma and K. C. Kalia, Principles of Inorganic Chemistry, Milestone Publishers, 2014.

2. W. W. Porterfield, Inorganic Chemistry-A Unified Approach, 2nd Ed., Academic Press, 1993.

3. B. W. Pfennig, Principles of Inorganic Chemistry, Wiley, 2015.

4. C. E. Housecroft and A. G. Sharpe, Inorganic Chemistry, Pearson Education Limited, 2nd Edition 2005.

5. J. Huheey, F. A. Keiter and R. I. Keiter, Inorganic Chemistry–Principles of Structure and Reactivity, 4th Ed., Harper Collins, 1993.

6. P. J. Durrant and B. Durrant, Introduction to Advanced Inorganic Chemistry, Oxford University Press, 1967.

7. R. L. Dekock and H.B.Gray, Chemical Structure and Bonding, The Benjamin Cummings Publishing Company, 1989.

8. G. Miessler and D. Tarr, Inorganic Chemistry, 3rd Ed., Pearson Education, 2004.

9. R. Sarkar, General and Inorganic Chemistry, Books & Allied (P) Ltd., 2001.

10. C. M. Day and J. Selbin, Theoretical Inorganic Chemistry, Affiliated East West Press Pvt. Ltd., 1985.

11. J. N. Murrell, S. F. A. Kettle and J. M. Tedder, The Chemical Bond, Wiley, 1978.

12. G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, Inc., 1997. 13. D. Banerjea, Coordination Chemistry

14. P.W. Atkins, T. Overton, J. Rourke, M. Weller and F. Armstrong; Shriver & Atkins: Inorganic Chemistry, 4th ed. Oxford University Press, 2006.

15. F. A. Cotton, G. Wilkinson, C. A. Murillo and M. Bochmann; Advanced Inorganic Chemistry, 6th ed. Wiley, 1999,

16. B. Douglas, D. McDaniel and J. Alexander. Concepts and Models of Inorganic Chemistry(3rd edn.), John Wiley & Sons (1994).

C	: SY B.Sc. (2018-19)			Semest	
Course:	Organic Chemistry			Cours	e Code: USMACH303
	Teaching Sc	cheme		Evalua	ation Scheme
Lectur (Hours p week)		Tutori al (Hours per week)	Credit	Continuous Assessment (CA) (Marks - 25)	Semester End Examinations (SEE) (Marks- 75 in Question Paper)
3	3 g Objectives:	NIL	2+1	25	75
re CO8: de	activity of carbonyl c	ompounds ctical skill	s with nucleoph ls for the synt	ructure and bonding in can hiles, toxicology and relate hesis and analysis of org	d topics.
			nical reaction.		,
	of Syllabus: (per sess				
Outline o Module	of Syllabus: (per sess Description				No of Hours
		ion plan) drocarbon ophilic sub	s		
Module	Description 1.1 Halogenated Hyd 1.2 Aromatic electro	ion plan) drocarbon ophilic sub ols, Epoxic	s		No of Hours
Module 1	Description 1.1 Halogenated Hyd 1.2 Aromatic electro 1.3 Alcohols, Pheno 2.1 Carbonyl Chemin	ion plan) drocarbon ophilic sub ols, Epoxic stry	s ostitution des		No of Hours 15L
Module 1 2	Description 1.1 Halogenated Hyd 1.2 Aromatic electro 1.3 Alcohols, Pheno 2.1 Carbonyl Chemia 2.2 Stereochemistry 3.1 Toxicology 3.2 Unit Operation 3.3 Unit Processes	ion plan) drocarbon ophilic sub ols, Epoxic stry	s ostitution des		No of Hours 15L 15L

Module	Description	No of Hours
1	1.1 Halogenated Hydrocarbons (4L)	15L
	1.1.1 Alkyl Halides Nucleophilic substitution reactions: S_N^1 , S_N^2 and S_N^i mechanisms with stereochemical aspects Factors affecting nucleophilic substitution reactions : nature of substrate, solvent, nucleophilic reagent and leaving group	
	 1.1.2 Aryl halides Reactivity of aryl halides towards nucleophilic substitution reactions. Nucleophilic aromatic substitution (S_NAr) addition – elimination mechanism and benzyne mechanism 	
	 1.2 Aromatic Electrophilic Substitution (3L) 1.2.1 Mechanistic principles of electrophilic aromatic substitution reaction (nitration, sulphonation, halogenations, Friedel – Craft alkylation and acylation) of benzene. 1.2.2 Substituent effect on rate and orientation of reaction 	
	1.3 Alcohols, Phenols, Epoxides (8L)	
	1.3.1 AlcoholsNomenclaturePreparation: Reduction of aldehyde and ketones, Grignard reactionProperties: Hydrogen bonding and acidity of alcoholsReactions	
	1.3.2 PhenolsPreparationPhysical properties and acidic character, resonance stabilization, comparative acidic strength of alcohols and phenols	
	 1.3.3 Epoxides Nomenclature Preparation Reactions: Reactivity, ring opening reactions by nucleophiles (a) In acidic conditions: Hydrolysis, reaction with halogen halide, alcohol, hydrogen cyanide (b) In neutral or basic 	
	conditions: ammonia, amines, Grignard reagents, alkoxides	
2	 2.1 Carbonyl Chemistry (11L) 2.1.1 Nomenclature 2.1.2 Structure and reactivity 2.1.3 Methods of preparation: Oxidation of alcohols by using PCC, hydration of alkynes, action of Grignard reagent on ester, Rosenmund reduction, Gattermann -Koch formylation and Friedel Craft acylation of arenes 2.1.4 Reactions : General mechanism of nucleophilic addition, Addition of cyanide, hydride, organometallic reagents, water, alcohol, bisulphite and amines. 2.1.5 Keto enol tautomerization: Mechanism for acid and base catalysed enolization 	15L
	 2.1.6 Active methylene compounds : Alkylation and their synthetic poential 2.2 Stereochemistry (4L) 2.2.1 Molecular chirality and elements of symmetry: 	

Total	45
3.4 Overview of Chemical Industries (3L)	
3.3.2 Sulphonation : Mechanism, Industrial preparation of DDB and DDBS (detergent)	
3.3.1 Nitration : Mechanism, Industrial preparation of Nitrobenzene, m-dinitrobenzene	
3.3 Unit Processes (4L)	
3.2.5 Extractive distillation	
3.2.4 Vaccum distillation	
3.2.3 Azeotropic distillation	
3.2.2 Fractional distillation	
3.2.1 Introduction	
3.2 Unit Operations (3L)	
Bhopal gas tragedy	
Minamata episode	
3.1.5 Case Studies	
Organic : Hydrocarbons	
Non metals: SOx, NOx, CO	
Heavy metals : As, Hg, Pb, Cd	
3.1.4 Toxicity of various chemicals	
Effect of immune system	
Reversible and irreversible effects	
Observable physiological effects	
Biochemical effects	
3.1.3 General aspects of mechanism of metal ion toxicity	
3.1.2 Effect of toxic substances	
3.1.1 Concept and important terms	1.
3.1 Toxicology (5L)	15
Mirror plane of symmetry, inversion center, rotation-rotation-reflection (alternating) axis. 2.2.2 Chirality of compound without a stereogenic centre: Cummulene, spirans and biphenyl.	

To develop scientific temper and interest by exposure through industrial visits and study/educational tours is recommended in each semester

PRACTICAL I (If applicable)

1 Organic preparations [07]

1. Cyclohexanone oxime from cyclohexanone.

2. Glucosazone from dextrose or fructose

3. β -Naphthylbenzoate from β -Naphthol

4. m-dinitrobenzene from nitrobenzene

- 5. Phthalic anhydride from phthalic acid by sublimation
- 6. Acetanilide from aniline
- 7. Iodoform from acetone

2 Organic estimations [03]

- 1. Estimation of Aspirin
- 2. Estimation of Benzoic acid
- 3. Estimation of Acetone
- 4. Estimation of Amide

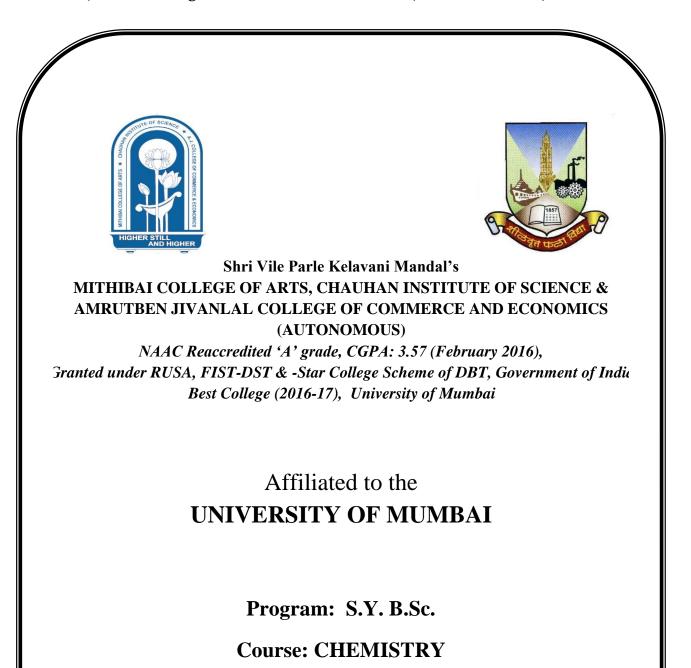
Suggested Readings

Text Books:

- 1. Rao, P.S. et al, College Organic Chemistry, Himalaya Publication, 2018
- 2. College Industrial and Environmental Chemistry, Himalaya Publication, 2015.
- 3. Patel H. N. et al, College Practical Chemistry, Himalaya Publication, 2019

Reference Books:

- 1. Sanyal S. N., Reactions, Rearrangements and Reagents, Bharati Bhawan Publishers & Distributors
- 2. Morrison, R. T. and Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd.


(Pearson Education).2012

- Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 4. Finar, I. L. Organic Chemistry (Volume 2: Stereochemistry and the Chemistry of Natural

Products), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education)

- 5. Mc Murry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning India Edition, 2013.
- Clayden, J.; Greeves, N.; Warren, S.; Wothers, P.; Organic Chemistry, Oxford University Press.
- 7. Kalsi, P. S. Textbook of Organic Chemistry 1st Ed., New Age International (P) Ltd. Pub.
- 8. Barton and Ollis, Comprehensive Organic chemistry, , Vol 1
- 9. Carey F.A. and Sundberg R.J., Advanced Organic Chemistry, Part A and B, Plenum Press.
- 10. Kalsi P.S., Stereochemistry: Conformation and Mechamism, New Age International, New Delhi.
- 11. Eliel E.L, Wilen S.H and Manden L.N, Stereochemistry of carbon compounds, Wiley.
- 12. Nasipuri D., Stereochemistry of Organic Compounds- Principles and Applications, New International Publishers Ltd.
- 13. Smith Michael B., March Jerry, March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Wiley.
- 14. Sykes Peter, Mechanism in Organic Chemistry, 6th edition onwards.

- 15. Carruthers W. and Coldham Iain, Modern Methods of Organic Synthesis, Cambridge University Press.
- 16. Singh Jagdamba, Yadav L.D.S., Organic Synthesis, PragatiPrakashan.
- 17. Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., Textbook of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996

Semester-IV

Choice Based Credit System (CBCS) with effect from the Academic year

2018-2019

PROGRAMME SPECIFIC OUTCOMES (PSO'S)

On completion of the B.Sc Chemistry the learners should be enriched with knowledge and be able to-

- PSO1: To have sound knowledge about the fundamentals and applications of various chemical and scientific theories.
- PSO2: To introduce the different branches of chemistry like analytical, organic, inorganic, physical, environmental, polymer and biochemistry etc.
- PSO3: To explain nomenclature, stereochemistry, structures, reactivity, chemical formulae, and mechanism of the chemical reactions.
- PSO4: To apply appropriate techniques for the qualitative and quantitative analysis of chemicals in laboratories and in industries.
- PSO5: To develop better understanding of good laboratory practices and safety.
- PSO6: To develop research oriented skills, analytical skills and problem solving skills requiring application of chemical principles.
- PSO7: To recognize causes of environmental pollution, environmental pollution act and the methods for environmental pollution control.

Preamble

The well-organized curriculum including basic as well as advanced concepts in chemistry from first year to third year shall inspire the students for pursuing higher studies in chemistry and for becoming an entrepreneur and also enable students to get employed in the Research Institutes, Industries, Educational Institutes and in the various concerning departments of State and Central Government based on subject chemistry.

Evaluation Pattern

The performance of the learner will be evaluated in two components. The first component will be a Continuous Assessment with a weightage of 25% of total marks per course. The second component will be a Semester end Examination with a weightage of 75% of the total marks per course. The allocation of marks for the Continuous Assessment and Semester end Examinations is as shown below:

c) Details of Continuous Assessment (CA)

25% of the total marks per course:

Continuous Assessment	Details	Marks
Component 1 (CA-1)	TEST	15 marks
Component 2 (CA-2)	ASSIGENMENT	10 marks

d) Details of Semester End Examination

75% of the total marks per course. Duration of examination will be two and half hours.

Question Number	Description	Marks	Total Marks
Q.1	Attempt any four of the following	5 marks each	20
Q.2	Attempt any four of the following	5 marks each	20
Q.3	Attempt any four of the following	5 marks each	20
Q.4	Attempt any five of the following	3 marks each	15
		Total Marks	75

Signature

Signature

Signature

HOD

Approved by Vice – Principal

Approved by Principal

Program	: SY B.Sc. (2018-19)			Semes	ter: IV	
Course: I	Physical Chemistry	7		Cours	e Code: USMACH401	
	Teaching So	cheme		Evaluation Scheme		
Lecture (Lectures) week)	res per (Lectures per Hours Credit Assessment (CA)		Semester End Examinations (SEE) (Marks- 75 in Question Paper)			
3	3 Objectives:	NIL	2 + 1	25	75	
eld 7. To 8. To 9. To <u>70 orient</u> Course O After com CO5: un an CO6: fu CO7: un CO8: un CO9: un CO10: un	ectrodes, Nernst equa o orient learner about o acquaint learner about o teach learner about learner about qualitat Dutcomes: apletion of the course iderstand the differer d Nernst equation an indamental of solid st iderstand the basic co iderstand the importa iderstand different typ	tion and it the fundation out the bas various lav tive and qu tive and qu types of d its impo ate chemis oncept of n nce of cata pes of com pes of law ive and qu	ts applications a mentals of solid ic concept of ca ws and instrume uantitative analy would be able to relectrochemica rtance. stry and different alysis and its different alysis and its different alysis and its different and instrument antitative analy	and various thermodynam I state chemistry and nucl atalysis and chemical kine entation in colorimetry ysis in colorimetry. o: al cell, different sign con at of types of crystal and t ry, different processes inv fferent types. and factors affecting the r station in colorimetry	ear chemistry. tics vention, electrochemical series heir properties. olve in it and its applications.	
Module	Description	-			No of Hours	
1	1.1 Electrochemistry 1.2 Molecular Spect				15L	
2	2.1 Solid State2.2 Catalysis				15L	
3	3.1 Physical Proper	ties of Liq	uids -II		15L	
	Total				45L	
PRACTIO	CALS					

Module	Description	No of Hours
1	 1.1Electrochemistry-II (7 L) 1.1.1 Electrochemical Conventions, Reversible and irreversible cells. 1.1.2 Nernst equation and its importance, Types of electrodes, Standard electrode potential, Electrochemical series, Applications of electrochemical series. (Numericals expected). 1.1.3 Thermodynamics of a reversible cell, calculation of thermodynamic properties: ΔG, ΔH and ΔS from EMF data. (Numericals expected) 1.1.4 Calculation of equilibrium constant from EMF data. (Numericals expected) 	15L
	2 Molecular Spectroscopy-I (8 L)	
	 1.2.1 Nature of electromagnetic radiations, interaction of electromagnetic radiations with matter viz Absorption, Emission, Fluorescence and Scattering 1.2.2 Terms: Energy of light, Intensity of light, Polychromatic and Monochromatic light, Wavelength of maximum absorption 1.2.3 Theory- Statement and Derivation of Lambert's law and Beer's law, Statement of Beer-Lambert's law–Combined expression, Absorbance, Transmittance, Percentage transmittance, Molar extinction coefficient, Validity of Beer-Lamberts law, Deviations from Beer-Lamberts law. Applications: Quantitative Analysis by calibration curve method. (Numerical problems expected) 	
2	 2. 1 Solid State (8L) 2. 1.1 Recapitulation of laws of crystallography and types of crystals. 2.1.2 Characteristics of simple cubic, face centered cubic and body centered cubic systems, Inter-planar distance in cubic lattice (only expression for ratio of inter-planar distances are expected). 2.1.3 Use of X-rays in the study of crystal structure, Bragg's equation, X-rays diffraction method of studying crystal lattice structure, 2.1.4 Structure of NaCl and KCl. Determination of Avogadro's number. (Numerical Problems) 	15L
	 2. 2. Catalysis (7L) 2. 2.1 Types of catalysis, catalytic activity, specificity and selectivity, inhibitors, catalyst poisoning and deactivation 2. 2.2 Mechanisms and kinetics of acid-base catalyzed reactions, effect of pH, Mechanisms and kinetics of enzyme catalyzed reactions (Michaelis-Menten equation) 2. 2.3 Effect of particle size and efficiency of nanoparticles as catalyst. 	
3	Physical Properties in Liquids-II3.1 Surface Tension: Introduction, Principle, Methods of determination of surface tension -drop number method.(Numerical expected). Applications3.2Viscosity: Introduction, Principle,Coefficient of viscosity, Relative viscosity, Method of determination by Ostwald viscometer (Numerical expected). Applications.3.3 Potentiometry: Introduction, Principle, Instrumentation, Applications, Advantages and Limitations.	15L

	3.4 Colorimetry: Introduction, Principle, Instrumentation, Applications, Advantages and Limitations.	
	Total	45L
PRACTI	CALS	

To develop scientific temper and interest by exposure through industrial visits and study/educational tours is recommended in each semester

PRACTICAL I (If applicable)

1 Determine the Surface Tension of methyl acetate/ ethyl acetate/ chloroform.

2 Determine the Viscosity of methyl acetate/ ethyl acetate/ chloroform by Ostwald's Viscometer.

To determine standard emf, standard free energy change and equilibrium constant of galvanic cell.

4 To determine the amount of Cu^{2+} ingiven copper sulphatesolution by using colorimeter.

5 Determination of λ_{max} and molar absorptivity (ϵ) of KMnO₄ photometrically.

6 To determine the amount of Fe(II) in the given solution by titration with a standard $K_2Cr_2O_7$ solution and hence to find the formal redox potential of Fe³⁺/Fe²⁺.

Suggested Readings

Reference Books:

3

1. Peter Atkins and Julio de Paula, Atkin's Physical Chemistry, 7th Edn., Oxford University Press, 2002.

2. K.J. Laidler and J.H. Meiser, Physical Chemistry, 2nd Ed., CBS Publishers and Distributors, New Delhi, 1999.

3. Robert J. Silby and Robert A. Alberty, Physical Chemistry, 3rd Edn., John Wiley and Sons (Asia) Pte. Ltd., 2002.

4. Ira R. Levine, Physical Chemistry, 5th Edn., Tata McGraw-Hill New Delhi, 2002.

5. G.W. Castellan, Physical Chemistry, 3rd Edn., Narosa Publishing House, New Delhi, 1983.

6. S. Glasstone, Text Book of Physical Chemistry, 2nd Edn., McMillan and Co. Ltd., London, 1962

7. S. Glasstone, Thermodynamics for Chemists, Affiliated East-West Press, New Delhi, 1964.

8. W.G. Davis, Introduction to Chemical Thermodynamics – A Non – Calculus Approach, Saunders, Philadelphia, 19772.

9. Peter A. Rock, Chemical Thermodynamics, University Science Books, Oxford University Press, 1983.

10. Thomas Engel and Philip Reid, Physical Chemistry, 3rd Edn., Pearson Education Limited 2013.

11. D.N. Bajpai, Advanced Physical Chemistry, S. Chand 1st Edn., 1992.

12. Bockris, John O'M., Reddy, Amulya K.N., Gamboa-Aldeco, Maria E., Modern

Electrochemistry, 2A, Plenum Publishers, 1998.

13. Physical Chemistry by Gurtu and Gurtu

14. A Text book of Physical Chemistry by K L kapoor Vol 5 , 2nd Edn

Program	: SY B.Sc. (2018-19)			Seme	ester: IV	
Course: 1	Inorganic Chemist	ry		Course Code: USMACH402 Evaluation Scheme		
	Teaching Se	cheme				
Lectur (Lectures week)		Tutori al (Hours per week)	Credit	Continuous Assessment (CA) (Marks - 25)	Semester End Examinations (SEE) (Marks- 75 in Question Paper)	
3	3 3 Objectives:	NIL	2 + 1	25	75	
CO1: ex CO2: id CO3: us CO4: ex pr CO5: de	entify geometry and a e gravimetric analysi plain process involv oduction of the same	onds betwe structures of s effective yed in bull processes f	en two atoms y of co-ordination ly for quantitat c manufacturin	with the theories of chen n compounds with prope ive analysis.	er stereochemistry. ammonia, and factors affecting	
Module	Description				No of Hours	
1	Bonding in Co-ordin	nation com	pounds		15L	
2	Ions in aqueous me	dium and H	Bio-inorganic C	Chemistry	15L	
3	Industrial Inorganic	Chemistry			15L	
	Total				45L	
PRACTI	CALS					

Module	Description	No of Hours
1	Bonding in Co-ordination compounds	15L
	1.1 Valence Bond Theory (5L)	
	1.1.1 Application to 4, 5, 6- coordinate compounds	
	1.1.2 Electro-neutrality principle and backbonding.	
	1.2 Organometallic compounds (5L)	
	1.2.1 Introduction, definition, classification based on hapticity and nature of metal-	
	carbon bond	
	1.2.2 Eighteen electron rule and its applications, exceptions	
	1.2.3 Metal carbonyls: bonding, general methods of preparation and properties	
	1.2.4 Applications	
	1.3 Chemistry of group 15 and Group 16 elements (5L)	
	1.1.1 General discussion of trends in their physical and chemical properties	
	Physical properties of hydrides of group 15 and group 16 elements with respect to	
	hydrogen bonding	
2	Ions in aqueous medium and Bio-inorganic Chemistry	15L
	2.1 Acidity of cations and basicity of anions (8L)	
	2.1.1 Hydration of Cations; Hydrolysis of Cations predicting degree of hydrolysis of	
	Cations-effect of Charge and Radious	
	2.1.2 Latimer Equation. Relationship between pKa, acidity and z^2/r ratios of metal ions	
	graphical Presentation	
	2.1.3 Classification of cations on the basis of acidity category – Non acidic, Moderately	
	acidic, strongly acidic, very strongly acidic with pKa values range and examples	
	2.1.4 Hydration of Anions; Effect of Charge and Radius; Hydration of anions- concept,	
	diagram classification on the basis of basicity	
	2.2 Bio-inorganic Chemistry (7L)	
	2.2.1 Metaloporphyrins	
	2.2.2 Chlorophyll	
	2.2.3 Cytochromes	
	2.2.4 Hemoglobin and myoglobin: oxygen transport and storage	
3	Industrial Inorganic Chemistry	15L
3	3.1 Corrosion and methods of protection of metals (7L)	IJL
	3.1.1 Introduction	
	3.1.2 Types of corrosion	
	3.1.3 Electrochemical theory of corrosion	
	3.1.4 Methods of protection	
	3.2 Environmental Studies (8L)	
	3.2.1 Multidisciplinary nature of environmental studies: Definition, scope and importance	
	3.2.2 Environmental pollution: Definition, causes, effects and control measures of water	
	and soil pollution	
	3.2.3 Role of individual in prevention of pollution and pollution case with reference to	
	water and soil pollution	

	3.2.4 Environment Protection Act Air Act, Water Act and Public awareness	
	Total	45L
PRACTI	CALS	

To develop scientific temper and interest by exposure through industrial visits and study/educational tours is recommended in each semester

PRACTICAL I (If applicable)

1 Gravimetric Analysis of

- 1. Zinc as $Zn_2P_2O_7$
- 2. Nickel as Ni-DMG
- 3. Barium as BaSO₄

2 Volumetric Analysis

1. Hardness of water samples.

2. Redox titration (oxalate versus KMnO₄)

Suggested Readings

Reference Books:

1. B. R. Puri, L. R. Sharma and K. C. Kalia, Principles of Inorganic Chemistry, Milestone Publishers, 2013-2014.

2. W. W. Porterfield, Inorganic Chemistry-A Unified Approach, 2nd Ed., Academic Press, 1993.

3. B. W. Pfennig, Principles of Inorganic Chemistry, Wiley, 2015.

4. C. E. Housecroft and A. G. Sharpe, Inorganic Chemistry, Pearson Education Limited, 2nd Edition 2005.

5. J. Huheey, F. A. Keiter and R. I. Keiter, Inorganic Chemistry–Principles of Structure and Reactivity, 4th Ed., Harper Collins, 1993.

6. P. J. Durrant and B. Durrant, Introduction to Advanced Inorganic Chemistry, Oxford University Press, 1967.

7. R. L. Dekock and H.B.Gray, Chemical Structure and Bonding, The Benjamin Cummings Publishing Company, 1989.

8. G. Miessler and D. Tarr, Inorganic Chemistry, 3rd Ed., Pearson Education, 2004.

9. R. Sarkar, General and Inorganic Chemistry, Books & Allied (P) Ltd., 2001.

10. C. M. Day and J. Selbin, Theoretical Inorganic Chemistry, Affiliated East West Press Pvt. Ltd., 1985.

11. J. N. Murrell, S. F. A. Kettle and J. M. Tedder, The Chemical Bond, Wiley, 1978.12. G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, Inc., 1997.

13. D. Banerjea ,Coordination Chemistry

14. Geary Coordination reviews

15. P.W. Atkins, T. Overton, J. Rourke, M. Weller and F. Armstrong; Shriver & Atkins: Inorganic Chemistry, 4th ed. Oxford University Press, 2006.

16. F. A. Cotton, G. Wilkinson, C. A. Murillo and M. Bochmann; Advanced Inorganic Chemistry, 6th ed. Wiley, 1999,

17. B. Douglas, D. McDaniel and J. Alexander. Concepts and Models of Inorganic Chemistry(3rd edn.), John Wiley & Sons (1994).

<u> </u>	SY B.Sc. (2018-19)				Semeste			
Course: O	rganic Chemistry	7			Course	Code: USM	ACH403	
	Teaching Se	cheme			Evaluat	ion Scheme		
Lecture (Lectures p week)		Tutori al (Hours per week)	Credit	Continuous Assessment (C (Marks - 25	CA)	Examina (Ma	ester End ations (SEE) arks- 75 stion Paper)	
3	3 Objectives:	NIL	2+1	25			75	
CO1: hav CO2: und read CO3: dev read	pletion of the course we working knowled derstand topics such ctivity of carbonyl c velop the basic prace sonable mechanism	ge of chem as the func- compounds ctical skill for a chem	tical principles lamentals of st with nucleoph s for the synth	appropriate to a chorecter and bonding the second s	g in carb l related	onyl compour topics.	nds, the	
Module	Description						No of Hours	
1	1.1 Carboxylic acids	s, derivativ	es and Sulphor	nic acids			15L	
	2.1 Enolate Chemist 2.2 Nitrogen contair	•	ounds				15L	
	3.1 Sources of organ3.2 Environmental a3.3 Oils, fats and soard	spects of c					15L	
ŗ	Total						45L	
PRACTIC	ALS							

Module	Description	No of Hours
1	1.1 Carboxylic acids derivatives and sulphonic acids	15L
	 1.1.1 Carboxylic acids 1.1.1.1 Nomenclature, structure and physical properties, acidity of carboxylic acids, effects of substituent on acid strength of aliphatic and aromatic carboxylic acids 1.1.1.2 Preparation: Oxidation of alcohols and alkyl benzenes, carbonation of Grignard and hydrolysis of nitriles 1.1.1.3 Reactions: Acidity, salt formation, decarboxylation, reduction of carboxylic acids with LiAlH4. Diborane, Hell- Volhard – Zelinsky reaction. Conversion of carboxylic acids to acid chlorides, esters, amide and acid anhydrides and their relative reactivity. 1.1.1.4 Mechanism of nucleophilic acyl substitution and acid catalysed nucleophilic acyl substitution. Interconversion of acid derivatives by nucleophilic acyl substitution. 1.1.5 Mechanisms of following reactions with examples and stereochemistry wherever applicable : Claisen condensation, Dieckmann condensation 	
	 1.1.2 Sulphonic acids 1.1.2.1 Nomenclature 1.1.2.2 Preparation of aromatic sulphonic acids by sulphonation of benzene (with mechanism), toluene and naphthalene 1.1.2.3 Reactions: Acidity of arene sulphonic acid, Comparitive acidity of carboxylic acid and sulphonic acids, Salt formation, desulphonation, Reaction with alcohol, phosphorous pentachloride, IPSO substitution. 	
2	2.1 Enolate Chemistry (8L) Mechanisms of following reactions with examples and stereochemistry wherever applicable: Halogenation reaction, Michael reaction, Aldol and Crossed Aldol reactions, Intramolecular aldol condensation reaction, Claisen Schmidt reaction, Mannich reaction, Robinson Annelation reaction, Knoevenagel reaction	15L
	2.2 Nitrogen containing compounds (7L)	
	 2.2.1 Amines 2.2.1.1 Nomenclature 2.2.1.2 Effect of substituents on basicity of aliphatic and aromatic amines 2.2.1.3 Preparation: Reduction of aromatic nitro compounds using catalytic hydrogenation, Chemical reduction using Fe – HCl, Sn – HCl, Zn – acetic acid, reduction of nitriles, ammonolysis of halides, reductive amination, Hofmann bromamide reaction 2.2.1.4 Reactions: Salt formation, N – acylation, N – alkylation, Hofmann's exhaustive methylation, Hofmann – elimination reaction, reaction with nitrous acid, carbylamines reaction, Electrophilic substitution in aromatic amines: bromination, nitration and sulphonation 	
	2.2.2 Diazonium salts Preparation and their reactions / synthetic application – Sandmeyer reaction, Gattermann reaction, Gomberg reaction, Replacement of diazo group by – H, - OH. Azo coupling	

	Total	45L
	3.3.7 Manufacture of soaps, settled or grained soap, Laundry and bath soap, glycerol recovery	
	3.3.6 Hydrogenation of oil	
	3.3.5 Extraction of animal fats	
	3.3.4 Extraction of oil from oilseeds – Hydraulic pressing, solvent extraction process	
	3.3.3 Properties of oils and fats	
	3.3.2 Classification of oils	
	oil, butter fat, animal fat.	
	3.3.1 Oils : Composition of some common oils and fats (peanut oil, sesame oil, cottonseed	
	3.3 Oils, fats and soaps (4L)	
	Concept of 4 'R's: Reduce – Recover – Reuse - Recycle	
	River (Mumbai), Chernobyl accident	
	3.2.4 Untoward chemical events causing hazards to the environment : London smog, Mithi	
	3.2.3 Natural chemical processes: Carbon cycle, Nitrogen cycle, oxygen cycle	
	Lithosphere, Biosphere (With respect to composition and interrelationship)	
	3.2.2 Composition of various segments of environment – Atmosphere, Hydrosphere,	
	3.2.1 Concept and scope of environmental chemistry. Components of environment : Biotic and Abiotic	
	3.2 Environmental Chemistry (4L)	
	3.1.3 Biofuels: Methanol, Ethanol, biodiesel, synthetic diesel.	
	Biomass: Transforming biomass into chemicals(pyrolysis) and synthesis gas	
	synthesis. Synthetic diesel (biomass to liquid)	
	alkanes, hydroformylation of olefins, synthesis of aromatic hydrocarbons, Fischer Tropsch	
	Composition, Synthetic uses of syn gas. Separation of hydrogen, Production of methanol,	
	Synthesis gas (Syn gas : production of syngas fromcoal, natural gas, biomass,	
	liquid), methanol, aromatic compounds, Natural gas hydrates : occurrence, structure.	
	Natural gas: Composition ,Conversion of methane higher alkanes, synthetic diesel (gas to	
	Catalytic cracking and reforming, hydrocracking, thermal cracking, steam cracking.	
	Petroleum: Characteristics, composition and origin of petroleum, Refining of petroleum,	
	Coal: Structure and types of coal, Destructive distillation of coal, Coal tar refining, coal liquefaction (coal to liquid) coal gasification Synthesis gas (syn gas),Hydropyrolysis.	
	Biomass	
	3.1.1 Non-renewable : Coal, Petroleum (crude oil) and Natural gas. 3.1.2 Renewable:	
5	3.1 Sources of organic compounds (7L)	151
3		15L
	with phenols, naphthols and aromatic amines, reduction of diazonium salt to aryl hydrazine and hydroazobenzene.	

To develop scientific temper and interest by exposure through industrial visits and study/educational tours is recommended in each semester

PRACTICAL I (If applicable)

1 Analysis of bi-functional organic compounds on the basis of

- 1. Preliminary examination
- 2. Solubility profile
- 3. Detection of elements C, H, (O), N, S, X.
- 4. Detection of functional groups

5. Determination of physical constants (m.p./b.p.)

Solid or liquid containing not more than two functional groups from among the following classes may be given for analysis to be given: Carboxylic acids, phenol, carbohydrates, aldehydes, ketones, ester, amides, nitro, anilides, amines, alkyl and aryl halides.

Students are expected to write balanced chemical reactions wherever necessary. (Minimum 10 compounds to be analyzed)

Suggested Readings

Reference Books:

1. Comprehensive Organic chemistry, Barton and Ollis, Vol 1

2. Organic Chemistry, J. Clayden, N. Greeves, S. Warren and P. Wothers, Oxford University Press.

3. Advanced Organic Chemistry, F.A. Carey and R.J. Sundberg, Part A and B, Plenum Press.

4. Stereochemistry: Conformation and Mechamism, P.S. Kalsi, New Age International, New Delhi.

5. Stereochemistry of carbon compounds, E.L Eliel, S.H Wilen and L.N Manden, Wiley.

6. Stereochemistry of Organic Compounds- Principles and Applications, D. Nasipuri. New International Publishers Ltd.

7. March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Michael B. Smith, Jerry March, Wiley.

8. Mechanism in Organic Chemistry, Peter sykes, 6th edition onwards.

9. Modern Methods of Organic Synthesis, W. Carruthers and Iain Coldham, Cambridge University Press.

10. Organic Synthesis, Jagdamba Singh, L.D.S. Yadav, Pragati Prakashan.